首页> 外文期刊>The Visual Computer >Solving nonlinear polynomial systems in the barycentric Bernstein basis
【24h】

Solving nonlinear polynomial systems in the barycentric Bernstein basis

机译:重心伯恩斯坦基础上求解非线性多项式系统

获取原文
获取原文并翻译 | 示例

摘要

We present a method for solving arbitrary systems of N nonlinear polynomials in n variables over an n -dimensional simplicial domain based on polynomial representation in the barycentric Bernstein basis and subdivision. The roots are approximated to arbitrary precision by iteratively constructing a series of smaller bounding simplices. We use geometric subdivision to isolate multiple roots within a simplex. An algorithm implementing this method in rounded interval arithmetic is described and analyzed. We find that when the total order of polynomials is close to the maximum order of each variable, an iteration of this solver algorithm is asymptotically more efficient than the corresponding step in a similar algorithm which relies on polynomial representation in the tensor product Bernstein basis. We also discuss various implementation issues and identify topics for further study.
机译:我们提出了一种基于重心伯恩斯坦基础和细分的多项式表示法来解决n维简单域上n个变量中n个变量的N个非线性多项式的任意系统的方法。通过迭代构造一系列较小的边界单纯形,可以将根近似为任意精度。我们使用几何细分来分离单纯形内的多个根。描述和分析了在舍入间隔算法中实现该方法的算法。我们发现,当多项式的总阶接近每个变量的最大阶时,此求解器算法的迭代比类似算法中对应步骤的渐近效率更高,该类似算法依赖于张量积Bernstein基础上的多项式表示。我们还将讨论各种实施问题,并确定需要进一步研究的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号