首页> 外文期刊>Computers & mathematics with applications >GPU-based parallel solver via the Kantorovich theorem for the nonlinear Bernstein polynomial systems
【24h】

GPU-based parallel solver via the Kantorovich theorem for the nonlinear Bernstein polynomial systems

机译:通过Kantorovich定理针对非线性Bernstein多项式系统的基于GPU的并行求解器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a parallel solver for the nonlinear systems in Bernstein form based on subdivision and the Newton-Raphson method, where the Kantorovich theorem is employed to identify the existence of a unique root and guarantee the convergence of the Newton-Raphson iterations. Since the Kantorovich theorem accommodates a singular Jacobian at the root, the proposed algorithm performs well in a multiple root case. Moreover, the solver is designed and implemented in parallel on Graphics Processing Unit(GPU) with SIMD architecture; thus, efficiency for solving a large number of systems is improved greatly, an observation validated by our experimental results.
机译:本文提出了一种基于细分和牛顿-拉夫森方法的伯恩斯坦形式非线性系统的并行求解器,其中,利用坎托罗维奇定理确定唯一根的存在并保证牛顿-拉夫森迭代的收敛性。由于Kantorovich定理在根部包含一个奇异的Jacobian定理,因此该算法在多根情况下表现良好。此外,该求解器在具有SIMD架构的图形处理单元(GPU)上并行设计和实现;因此,解决大量系统的效率大大提高,我们的实验结果证实了这一发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号