首页> 外文期刊>The Visual Computer >DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect
【24h】

DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect

机译:基于DTW的内核和等级级融合,可使用Kinect进行3D步态识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new 3D gait recognition method that utilizes the kinect skeleton data for representing the gait signature. We propose to use two new features, namely joint relative distance (JRD) and joint relative angle (JRA), which are robust against view and pose variations. The relevance of each JRD and JRA sequence in representing human gait is evaluated using a genetic algorithm. We also introduce a dynamic time warping-based kernel that takes a collection of JRD or JRA sequences as parameters and computes a dissimilarity measure between the training and the unknown sample. The proposed kernel can effectively handle variable walking speed without any need of extra pre-processing. In addition, we propose a rank-level fusion of JRD and JRA features that can boost the overall recognition performance greatly. The effectiveness of the proposed method is evaluated using a 3D skeletal gait database captured with a Kinect v2 sensor. In our experiments, rank level fusion of joint relative distance (JRD) and joint relative angle (JRA) achieves promising results, as compared against only JRD and only JRA-based gait recognition.
机译:本文提出了一种新的3D步态识别方法,该方法利用kinect骨架数据表示步态签名。我们建议使用两个新功能,即关节相对距离(JRD)和关节相对角度(JRA),它们对于视线和姿势变化具有鲁棒性。使用遗传算法评估每个JRD和JRA序列在代表人的步态中的相关性。我们还介绍了一个基于动态时间扭曲的内核,该内核将JRD或JRA序列的集合作为参数,并计算训练样本与未知样本之间的差异度。所提出的内核可以有效地处理可变的步行速度,而无需任何额外的预处理。此外,我们提出了JRD和JRA功能的等级融合,可以大大提高整体识别性能。使用Kinect v2传感器捕获的3D骨骼步态数据库评估了该方法的有效性。在我们的实验中,与仅JRD和仅基于JRA的步态识别相比,关节相对距离(JRD)和关节相对角度(JRA)的等级融合取得了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号