首页> 外文期刊>The Visual Computer >Forced Random Sampling: fast generation of importance-guided blue-noise samples
【24h】

Forced Random Sampling: fast generation of importance-guided blue-noise samples

机译:强制随机采样:快速生成重要度指导的蓝噪声样本

获取原文
获取原文并翻译 | 示例

摘要

In computer graphics, stochastic sampling is frequently used to efficiently approximate complex functions and integrals. The error of approximation can be reduced by distributing samples according to an importance function, but cannot be eliminated completely. To avoid visible artifacts, sample distributions are sought to be random, but spatially uniform, which is called blue-noise sampling. The generation of unbiased, importance-guided blue-noise samples is expensive and not feasible for real-time applications. Sampling algorithms for these applications focus on runtime performance at the cost of having weak blue-noise properties. Blue-noise distributions have also been proposed for digital halftoning in the form of precomputed dither matrices. Ordered dithering with such matrices allows to distribute dots with blue-noise properties according to a grayscale image. By the nature of ordered dithering, this process can be parallelized easily. We introduce a novel sampling method called forced random sampling that is based on forced random dithering, a variant of ordered dithering with blue noise. By shifting the main computational effort into the generation of a precomputed dither matrix, our sampling method runs efficiently on GPUs and allows real-time importance sampling with blue noise for a finite number of samples. We demonstrate the quality of our method in two different rendering applications.
机译:在计算机图形学中,随机采样经常用于有效地近似复杂的函数和积分。可以通过根据重要性函数分配样本来减少近似误差,但无法完全消除。为了避免出现可见的伪影,请尝试使样本分布是随机的,但在空间上是均匀的,这称为蓝噪声采样。无偏倚,重要性导向的蓝噪声样本的生成非常昂贵,并且对于实时应用而言并不可行。这些应用程序的采样算法专注于运行时性能,但代价是蓝噪声性能较弱。蓝噪声分布也已提出以预计算的抖动矩阵形式用于数字半色调。用这种矩阵进行的有序抖动允许根据灰度图像分布具有蓝噪声特性的点。通过有序抖动的性质,可以轻松并行化此过程。我们介绍了一种称为强制随机采样的新颖采样方法,该方法基于强制随机抖动,它是带有蓝噪声的有序抖动的一种变体。通过将主要的计算工作转移到预先计算的抖动矩阵的生成中,我们的采样方法可以在GPU上高效运行,并可以对有限数量的样本进行带有蓝色噪声的实时重要性采样。我们在两个不同的渲染应用程序中演示了我们方法的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号