首页> 外文期刊>The Visual Computer >Cortex-inspired multilayer hierarchy based object detection system using PHOG descriptors and ensemble classification
【24h】

Cortex-inspired multilayer hierarchy based object detection system using PHOG descriptors and ensemble classification

机译:使用PHOG描述符和集成分类的基于皮质的多层多层对象检测系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a hierarchal feature extraction and ensemble classification-based framework for object detection is proposed. The proposed object detection technique is motivated by the hierarchical learning mechanism in primate visual cortex, where each layer processes information differently. Initially, pyramid histogram of oriented gradients (PHOG) based descriptors are selected to generate shift and scale invariant descriptors of an image. PHOG-based feature descriptors are then processed in multi-layered hierarchy, following feed forward models in brain's visual cortex and exploited through ensemble classification techniques. The proposed cortex-inspired ensemble-based object detection (CI-EnsOD) system exploits hierarchical learning mechanism of visual cortex and it is computationally efficient compared to the existing cortex-inspired models. In addition, it reduces feature dimensionality and offers improved object detection performance. The performance of proposed technique is demonstrated using three publically available standard datasets. It is shown experimentally that the prototype selection in the proposed CI-EnsOD can be improved using k-means clustering. The obtained experimental results show that the proposed CI-EnsOD technique is more accurate and efficient than contemporary cortex-inspired object detection techniques. Finally, it is also observed that the proposed technique is capable of providing compact descriptors compared to principle component analysis and independent component analysis.
机译:本文提出了一种基于层次特征提取和集成分类的目标检测框架。所提出的目标检测技术是受灵长类视觉皮层中的分层学习机制激励的,其中每个层对信息的处理方式不同。最初,选择基于定向梯度的金字塔直方图(PHOG)的描述符以生成图像的平移和缩放不变描述符。然后,按照大脑视觉皮层中的前馈模型,通过多层分类处理基于PHOG的特征描述符,并通过集成分类技术加以利用。拟议中的基于皮质启发的基于集合的对象检测(CI-EnsOD)系统利用了视觉皮质的分层学习机制,与现有的基于皮质启发的模型相比,该算法在计算上是有效的。另外,它降低了特征尺寸并提供了改进的物体检测性能。使用三个公共可用的标准数据集证明了所提出技术的性能。实验表明,使用k-means聚类可以改进CI-EnsOD中的原型选择。获得的实验结果表明,所提出的CI-EnsOD技术比现代皮质启发对象检测技术更准确,更高效。最后,还观察到,与主成分分析和独立成分分析相比,所提出的技术能够提供紧凑的描述符。

著录项

  • 来源
    《The Visual Computer》 |2017年第1期|99-112|共14页
  • 作者单位

    Pakistan Inst Engn & Appl Sci, Pattern Recognit Lab, Dept Comp & Informat Sci, Islamabad, Pakistan;

    Pakistan Inst Engn & Appl Sci, Pattern Recognit Lab, Dept Comp & Informat Sci, Islamabad, Pakistan|Pakistan Inst Engn & Appl Sci, Dept Elect Engn, Islamabad, Pakistan;

    Pakistan Inst Engn & Appl Sci, Pattern Recognit Lab, Dept Comp & Informat Sci, Islamabad, Pakistan;

    Pakistan Inst Engn & Appl Sci, Dept Elect Engn, Islamabad, Pakistan;

    Pakistan Inst Engn & Appl Sci, Dept Phys & Appl Math, Islamabad, Pakistan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object detection; Brain's cortex; Ensemble classification; Feature extraction;

    机译:目标检测;大脑皮层;集合分类;特征提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号