首页> 外文期刊>The Visual Computer >Dual-Path Adversarial Learning for Fully Convolutional Network (FCN)-Based Medical Image Segmentation
【24h】

Dual-Path Adversarial Learning for Fully Convolutional Network (FCN)-Based Medical Image Segmentation

机译:基于全卷积网络(FCN)的双路径对抗学习医学图像分割

获取原文
获取原文并翻译 | 示例

摘要

Segmentation of regions of interest (ROIs) in medical images is an important step for image analysis in computer-aided diagnosis systems. In recent years, segmentation methods based on fully convolutional networks (FCNs) have achieved great success in general images. FCN performance is primarily due to it leveraging large labeled datasets to hierarchically learn the features that correspond to the shallow appearance as well as the deep semantics of the images. However, such dependence on large dataset does not translate well into medical images where there is a scarcity of annotated medical training data, and FCN results in coarse ROI detections and poor boundary definitions. To overcome this limitation, medical image-specific FCN methods have been introduced with post-processing techniques to refine the segmentation results; however, the performance of these methods is reliant on the appropriate tuning of a large number of parameters and dependence on data-specific post-processing techniques. In this study, we leverage the state-of-the-art image feature learning method of generative adversarial network (GAN) for its inherent ability to produce consistent and realistic images features by using deep neural networks and adversarial learning concept. We improve upon GAN such that ROI features can be learned at different levels of complexities (simple and complex), in a controlled manner, via our proposed dual-path adversarial learning (DAL). The outputs from our DAL are then augmented to the learned ROI features into the existing FCN training data, which increases the overall feature diversity. We conducted experiments on three public datasets with a variety of visual characteristics. Our results demonstrate that our DAL can improve FCN-based segmentation methods and outperform or be competitive in performances to the state-of-the-art methods without using medical image-specific optimizations.
机译:医学图像中感兴趣区域(ROI)的分割是计算机辅助诊断系统中图像分析的重要步骤。近年来,基于全卷积网络(FCN)的分割方法在一般图像中取得了巨大的成功。 FCN的性能主要是由于它利用大型的标记数据集来分层学习与图像的浅层外观和深层语义相对应的特征。但是,这种对大型数据集的依赖不能很好地转换为医学图像,因为在这些图像中缺少注释的医学培训数据,而FCN会导致ROI粗略检测和边界定义不佳。为了克服这一限制,已经引入了医学图像专用的FCN方法和后处理技术来完善分割结果。但是,这些方法的性能取决于对大量参数的适当调整以及对特定于数据的后处理技术的依赖。在这项研究中,我们利用生成对抗网络(GAN)的最新图像特征学习方法,利用其通过使用深度神经网络和对抗学习概念产生一致,逼真的图像特征的固有能力。我们对GAN进行了改进,从而可以通过我们提出的双路径对抗学习(DAL),以受控的方式在不同复杂程度(简单和复杂)下学习ROI功能。然后,将DAL的输出扩展到现有的FCN训练数据中,将学习到的ROI功能扩展到现有FCN训练数据中,从而增加了整体功能的多样性。我们对三个具有各种视觉特征的公共数据集进行了实验。我们的结果表明,我们的DAL可以改进基于FCN的分割方法,并且在性能上优于最新方法,或者在不使用医学图像特定优化的情况下,在性能上具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号