首页> 外文期刊>The Visual Computer >A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models
【24h】

A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models

机译:基于非均匀高斯混合模型的鲁棒非刚性点集配准方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel robust non-rigid point set registration method adopting a new probability model called inhomogeneous Gaussian mixture models (IGMM), where we regard one point set as the centroids of a Gaussian mixture model and the other point set as the data. The IGMM is defined by applying local features and Gaussian mixture models. Considering the local relationship among neighboring points is stable, a neighborhood structural descriptor, named as local shape context, is first presented. On the basis of local descriptors, we can obtain a measure of compatibility between local features in the point sets. Then, the similarity of the local structure of point neighborhoods can be calculated on the basis of the matching scores. Each Gaussian mixture component is assigned a different weight depending on the feature similarity, which differs from the traditional Gaussian mixture model where each Gaussian mixture component has the same weight. The proposed IGMM makes point pairs with more similar features have bigger probability to formulate a match, while in algorithms based on GMMs, all point pairs have the same probability to construct correspondence points. Finally, we support our claims through regularization theory and formulate registration as a likelihood maximization problem, which is solved by updating transformation parameters and outlier ratios using the expectation maximization algorithm. Extensive comparison and evaluation experiments on synthetic point-sets datasets demonstrate that the proposed approach is robust and achieves superior performance in the presence of non-rigid deformation, noise, outliers and occlusion. In addition, a number of experiments on real images reveal that our proposed algorithm is more applicable than state-of-the-art algorithms.
机译:在本文中,我们提出了一种新颖的鲁棒非刚性点集配准方法,该方法采用了称为非均质高斯混合模型(IGMM)的新概率模型,其中我们将一个点集视为高斯混合模型的质心,而将另一个点集视为数据。 IGMM通过应用局部特征和高斯混合模型来定义。考虑到相邻点之间的局部关系是稳定的,首先提出了一种称为局部形状上下文的邻域结构描述符。在局部描述符的基础上,我们可以获得点集中局部特征之间兼容性的度量。然后,可以基于匹配分数来计算点邻域的局部结构的相似性。根据特征相似度,为每个高斯混合分量分配不同的权重,这不同于传统的高斯混合模型,在传统的高斯混合模型中,每个高斯混合分量具有相同的权重。提出的IGMM使得具有更多相似特征的点对具有更大的概率来制定匹配,而在基于GMM的算法中,所有点对具有相同的概率来构造对应点。最后,我们通过正则化理论支持我们的主张,并将配准公式化为似然最大化问题,该问题可以通过使用期望最大化算法更新变换参数和离群值比率来解决。在合成点集数据集上进行的广泛比较和评估实验表明,该方法是鲁棒的,并且在存在非刚性变形,噪声,离群值和遮挡的情况下具有出色的性能。此外,对真实图像的大量实验表明,我们提出的算法比最新算法更适用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号