首页> 外文期刊>The Visual Computer >A novel unconditionally stable explicit integration method for finite element method
【24h】

A novel unconditionally stable explicit integration method for finite element method

机译:一种新的无条件稳定有限元显式积分方法

获取原文
获取原文并翻译 | 示例

摘要

Physics-based deformation simulation demands much time in integration process for solving motion equations. To ameliorate, in this paper we resort to structural mechanics and mathematical analysis to develop a novel unconditionally stable explicit integration method for both linear and nonlinear FEM. First we advocate an explicit integration formula with three adjustable parameters. Then we analyze the spectral radius of both linear and nonlinear dynamic transfer function's amplification matrix to obtain limitations for these three parameters to meet unconditional stability conditions. Finally, we theoretically analyze the accuracy property of the proposed method so as to optimize the computational errors. The experimental results indicate that our method is unconditionally stable for both linear and nonlinear systems and its accuracy property is superior to both common and recent explicit and implicit methods. In addition, the proposed method can efficiently solve the problem of huge computation cost in integration procedure for FEM.
机译:基于物理的变形模拟在积分过程中需要大量时间来求解运动方程。为了改善这一点,在本文中,我们借助结构力学和数学分析来为线性和非线性FEM开发一种新的无条件稳定的显式积分方法。首先,我们提倡具有三个可调参数的显式积分公式。然后,我们分析了线性和非线性动态传递函数的放大矩阵的谱半径,以获得这三个参数的限制,以满足无条件稳定条件。最后,我们从理论上分析了该方法的准确性,从而优化了计算误差。实验结果表明,我们的方法对于线性和非线性系统都是无条件稳定的,并且其精度属性优于常规方法和最新的显式和隐式方法。另外,该方法可以有效解决有限元集成过程中计算量大的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号