首页> 美国卫生研究院文献>The Journal of Chemical Physics >Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects
【2h】

Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

机译:基于使用晶格求和方法的显式溶剂模拟计算带电物种的结合自由能:静电有限尺寸效应的精确校正方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
机译:基于分子动力学(MD)模拟的蛋白质-配体结合自由能的计算通常依赖于热力学循环,在该热力学循环中,配体以化学方式插入到系统中,既存在溶剂化的蛋白质中,又游离于溶液中。通常在周期性边界条件下并考虑由周期性晶格和定义的静电相互作用,在纳米级计算盒中计算相应的配体插入自由能。这不同于在具有库仑静电相互作用的非周期性边界条件下模拟的宏观尺寸系统的理想整体情况。这种差异导致有限大小的效应,该效应主要影响插入自由能的电荷成分,取决于盒的大小,并且在配体带有净电荷时尤其是在蛋白质也带电荷的情况下可能很大。本文以配体2-氨基-5-甲基噻唑(净电荷+1 e)与水中酵母细胞色素c过氧化物酶突变体的结合形式作为测试案例,研究了计算出的带电自由能的有限大小效应。在不存在或存在中和抗衡离子的情况下,考虑蛋白质的不同电荷同工型(净电荷-5、0,+ 3或+9 e),以及立方计算框的大小(边范围为7.42至11.02 nm),表明了对原始充电自由能(高达17.1 kJ mol -1 )的有限大小影响的潜在大小。然后提出了两种校正方案来消除这些影响,一种是数值校正方案,另一种是解析方案。两种方案都基于连续静电学分析,并且需要对蛋白质-配体系统执行Poisson-Boltzmann(PB)计算。虽然数值方案要求在非周期性和周期性边界条件下都进行PB计算,但后者在MD模拟中考虑了盒尺寸,但对于给定的系统,分析方案仅需要进行三个非周期性PB计算,其对盒的依赖性大小正在分析。后一种方案还提供了对有限尺寸效应的物理起源的洞察力。这两种方案还包括对离散溶剂影响的校正,该校正作用即使在无限大的盒子尺寸范围内也可以持续。两种方案的应用实质上消除了校正后的充电自由能的大小依赖性(最大偏差为1.5 kJ mol -1 )。因为应用简单,所以分析校正方案为涉及带电溶质的自由能计算中的有限尺寸效应问题提供了一个通用解决方案,例如在涉及蛋白质-配体结合,生物分子缔合,残基突变的计算中遇到的问题,pKa和氧化还原电势估算,底物转化,溶剂化和溶剂-溶剂分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号