首页> 外文期刊>The Visual Computer >Point-pattern matching based on point pair local topology and probabilistic relaxation labeling
【24h】

Point-pattern matching based on point pair local topology and probabilistic relaxation labeling

机译:基于点对局部拓扑和概率松弛标记的点模式匹配

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust point-pattern matching (PPM) algorithm, in which the invariant feature and probabilistic relaxation labeling are combined to improve the assignment accuracy and efficiency. A local feature descriptor, namely, point pair local topology (PPLT), is proposed first. The feature descriptor is defined by histogram which is constructed using the weighting of distance measures and angle measures based on local point pair. We use the matching scores of point pair local topology descriptor's statistic test to define new compatibility coefficients. Then, the robust support functions are constructed based on the obtained compatibility coefficients. Finally, according to the relaxed iterations of matching probability matrix and the mapping constraints required by the bijective correspondence, the correct matching results are obtained. A number of comparison and evaluation experiments on both synthetic point sets and real-world data demonstrate that the proposed algorithm performs better in the presence of outliers and positional jitter. In addition, it achieves the superior performance under similarity and even nonrigid transformation among point sets in the meantime compared with state-of-the-art approaches.
机译:本文提出了一种鲁棒的点模式匹配(PPM)算法,该算法将不变特征和概率松弛标记相结合,以提高分配精度和效率。首先提出了局部特征描述符,即点对局部拓扑(PPLT)。特征描述符由直方图定义,该直方图是基于局部点对使用距离度量和角度度量的加权构建的。我们使用点对局部拓扑描述符的统计检验的匹配分数来定义新的兼容性系数。然后,基于获得的相容性系数构造鲁棒支持函数。最后,根据匹配概率矩阵的松弛迭代和双射对应所要求的映射约束,得到正确的匹配结果。在合成点集和真实数据上的大量比较和评估实验表明,该算法在存在异常值和位置抖动的情况下表现更好。此外,与最新方法相比,它在点集之间的相似性甚至非刚性变换下也具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号