首页> 外文期刊>The Visual Computer >Salient object detection from low contrast images based on local contrast enhancing and non-local feature learning
【24h】

Salient object detection from low contrast images based on local contrast enhancing and non-local feature learning

机译:基于局部对比度增强和非本地特征学习的低对比度图像的突出对象检测

获取原文
获取原文并翻译 | 示例

摘要

Salient object detection can facilitate numerous applications. Traditional salient object detection models mainly utilize low-level hand-crafted features or high-level deep features. However, they may face great challenges in the nighttime scene, due to the difficulties in extracting well-defined features to represent saliency information from low contrast images. In this paper, we present a salient object detection model based on local contrast enhancing and non-local feature learning. This model extracts non-local feature combines with local features under a unified deep learning framework. Besides, a deeply enhanced network is employed as a preprocessing of the low contrast images to assist our saliency detection model. The key idea of this paper is firstly hierarchically introducing a non-local module with local contrast-processing blocks, to provide a detailed and robust representation of saliency information. Then, an encoder-decoder image-enhanced network with full convolution layers is introduced to process the low contrast images for higher contrast and completer structure. As a minor contribution, this paper contributes a new dataset, including 676 low contrast images for testing our model. Extensive experiments have been conducted in the proposed low contrast image dataset to evaluate the performance of our method. Experimental results indicate that the proposed method yields competitive performance compared to existing state-of-the-art models.
机译:突出物体检测可以促进许多应用。传统的突出物体检测模型主要利用低级手工制作的功能或高级深度特征。然而,由于提取明确定义的特征来代表低对比度图像的显着信息,它们可能面临夜间场景中的巨大挑战。在本文中,我们介绍了一种基于局部对比度增强和非本地特征学习的突出物体检测模型。此模型提取非本地特征与统一的深度学习框架下的本地特征相结合。此外,使用深度增强的网络作为低对比度图像的预处理,以帮助我们的显着性检测模型。本文的关键思路首先具有本地对比处理块的非本地模块,以提供显着信息的详细和强大表示。然后,引入了具有完整卷积层的编码器 - 解码器图像增强网络以处理更高对比度和随机性结构的低对比度图像。作为一个小贡献,本文贡献了一个新数据集,包括676个低对比度图像,用于测试我们的模型。已经在所提出的低对比度图像数据集中进行了广泛的实验,以评估我们方法的性能。实验结果表明,与现有最先进的模型相比,该方法产生了竞争性能。

著录项

  • 来源
    《The Visual Computer》 |2021年第8期|2069-2081|共13页
  • 作者

    Guo Tengda; Xu Xin;

  • 作者单位

    Wuhan Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430065 Peoples R China;

    Wuhan Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430065 Peoples R China|Wuhan Univ Sci & Technol Hubei Prov Key Lab Intelligent Informat Proc & Re Wuhan 430065 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salient object detection; Low contrast; Non-local feature; Image-enhanced network;

    机译:突出物体检测;低对比度;非本地特征;图像增强网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号