首页> 外文期刊>The Visual Computer >A deep neural network model for content-based medical image retrieval with multi-view classification
【24h】

A deep neural network model for content-based medical image retrieval with multi-view classification

机译:具有多视图分类的基于内容的医学图像检索的深度神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

In medical applications, retrieving similar images from repositories is most essential for supporting diagnostic imaging-based clinical analysis and decision support systems. However, this is a challenging task, due to the multi-modal and multi-dimensional nature of medical images. In practical scenarios, the availability of large and balanced datasets that can be used for developing intelligent systems for efficient medical image management is quite limited. Traditional models often fail to capture the latent characteristics of images and have achieved limited accuracy when applied to medical images. For addressing these issues, a deep neural network-based approach for view classification and content-based image retrieval is proposed and its application for efficient medical image retrieval is demonstrated. We also designed an approach for body part orientation view classification labels, intending to reduce the variance that occurs in different types of scans. The learned features are used first to predict class labels and later used to model the feature space for similarity computation for the retrieval task. The outcome of this approach is measured in terms of error score. When benchmarked against 12 state-of-the-art works, the model achieved the lowest error score of 132.45, with 9.62-63.14% improvement over other works, thus highlighting its suitability for real-world applications.
机译:在医学应用中,从存储库检索类似图像对于支持基于诊断的临床分析和决策支持系统来说是最重要的。然而,由于医学图像的多模态和多维性质,这是一个具有挑战性的任务。在实践方案中,可以用于开发高效医学图像管理的智能系统的大型和平衡数据集的可用性非常有限。传统模型通常无法捕获图像的潜在特征,并且在应用于医学图像时已经实现了有限的准确性。为了解决这些问题,提出了一种用于查看分类和基于内容的图像检索的基于深度的基于网络的方法,并且证明了其用于有效的医学图像检索的应用。我们还设计了一种用于身体部位方向视图分类标签的方法,打算降低不同类型扫描中发生的方差。首先使用学习的功能来预测类标签,后来用于模拟用于检索任务的相似性计算的特征空间。在错误分数方面测量这种方法的结果。当反对12个最先进的工作时,该模型实现了132.45的最低误差分,其他作品提高了9.62-63.14%,从而突出了其对现实应用的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号