首页> 外文期刊>The Visual Computer >Automatic detection of pulmonary nodules in CT images based on 3D Res-I network
【24h】

Automatic detection of pulmonary nodules in CT images based on 3D Res-I network

机译:基于3D RES-I网络的CT图像自动检测肺结核

获取原文
获取原文并翻译 | 示例

摘要

It is difficult for the existing detection methods of the pulmonary nodules to take into account the global and local features simultaneously. It will lead to over-fitting and lower sensitivity since the extracted features of 3D pulmonary nodules is too complex. To solve these problems, a model based an improved 3D residual structure (3D Res-I) was proposed to detect pulmonary nodules. In the model, the basic residual structure is improved by using rectangular convolution kernel, grouping convolution and pre-activation. Rectangular convolution kernel expands the receptive filed of the convolution, which effectively takes into account the global and local features of the pulmonary nodules. Grouping convolution reduces the computational cost of the model. Pre-activation operation alleviates over-fitting phenomenon. 3D Res-I structure is combined with the improved U-Net network as the feature extraction network of Faster R-CNN. The experimental results on LUNA16 dataset show that the proposed model improves the detection accuracy of pulmonary nodules and reduces the average number of false positives and the size of the generated model.
机译:肺结核的现有检测方法难以同时考虑全局和局部特征。由于3D肺结核的提取特征过于复杂,因此它将导致过度拟合和较低的灵敏度。为了解决这些问题,提出了一种改进的3D残差结构(3D Res-I)以检测肺结节。在该模型中,通过使用矩形卷积核,分组卷积和预激活来改善基本残余结构。矩形卷积内核扩大了卷积的接受提交,有效考虑了肺结核的全球和局部特征。分组卷积降低了模型的计算成本。预激活操作减轻了过度拟合现象。 3D RES-I结构与改进的U-Net网络相结合,作为更快的R-CNN的特征提取网络。 Luna16数据集的实验结果表明,该模型提高了肺结核的检测精度,并减少了误报的平均数量和所产生的模型的大小。

著录项

  • 来源
    《The Visual Computer》 |2021年第6期|1343-1356|共14页
  • 作者

    Shi Lukui; Ma Hongqi; Zhang Jun;

  • 作者单位

    Hebei Univ Technol Sch Artificial Intelligence Tianjin 300401 Peoples R China|Hebei Univ Technol Hebei Key Lab Big Data Comp Tianjin 300401 Peoples R China;

    Hebei Univ Technol Sch Artificial Intelligence Tianjin 300401 Peoples R China|Hebei Univ Technol Hebei Key Lab Big Data Comp Tianjin 300401 Peoples R China;

    Hebei Univ Technol Sch Artificial Intelligence Tianjin 300401 Peoples R China|Hebei Univ Technol Hebei Key Lab Big Data Comp Tianjin 300401 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pulmonary nodule detection; U-net; Faster R-CNN; Rectangular convolutional kernels; Grouping convolution; Pre-activation;

    机译:肺结核检测;U-net;更快的R-CNN;矩形卷积核;分组卷积;预激活;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号