首页> 外文期刊>The Visual Computer >Efficient object tracking using hierarchical convolutional features model and correlation filters
【24h】

Efficient object tracking using hierarchical convolutional features model and correlation filters

机译:使用分层卷积功能模型和相关滤波器有效的对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Visual object tracking is a very important task in computer vision. This paper develops a method based on the convolutional neural network (CNN) and correlation filters for visual object tracking. To implement a superior tracking method, we develop a multiple correlation tracker. This paper presents an effective method to track an object based on a combination of feature hierarchies of CNNs. We combine several feature hierarchies and compute the more discriminative map to track the object. Firstly, the correlation filters framework is selected to build the new tracker. Secondly, three feature maps from the CNN, which are inserted into the correlation filters framework, are adopted to evaluate the object location independently. Finally, a novel method of feature hierarchies integration based on Kullback-Leibler (KL) divergence is adopted. Experiments on the different sequences are carried out, and the outputs reveal that the proposed tracker has better results than those of the state-of-the-art methods, and it has the ability to handle various challenges.
机译:Visual Object Tracking是计算机愿景中的一个非常重要的任务。本文开发了一种基于卷积神经网络(CNN)的方法和用于视觉对象跟踪的相关滤波器。要实现卓越的跟踪方法,我们开发了一个多个相关跟踪器。本文提出了一种基于CNN的特征层次结构的组合来跟踪对象的有效方法。我们组合了多个特征层次结构并计算更辨别的映射以跟踪对象。首先,选择相关过滤器框架来构建新的跟踪器。其次,采用从CNN插入到相关滤波器框架中的三个特征映射,以独立地评估对象位置。最后,采用了一种基于Kullback-Leibler(KL)发散的特征层次集成的新方法。执行对不同序列的实验,并且输出显示,所提出的跟踪器具有比最先进的方法的结果更好,并且它具有处理各种挑战的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号