首页> 外文期刊>Knowledge-Based Systems >Correlation filters with adaptive convolution response fusion for object tracking
【24h】

Correlation filters with adaptive convolution response fusion for object tracking

机译:具有自适应卷积响应融合的相关滤波器对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Recently, the rich features extracted by deep learning models have been widely used under the correlation filter tracking framework and achieved great success. However, the features in different layers are often combined with fixed weights, which do not consider the different importance of different layers. In this paper, we propose a novel tracking method which can adaptively tune the weights of the convolutional responses obtained by features in different layers. We propose two adaptive weighting strategies, i.e. the cosine weighting and quadratic optimization weighting, adaptively assigning weights to each submodel, and combining multiple view submodels. Moreover, Normalized Peak Value is used to estimate the tracking reliability. Experimental results demonstrate that the proposed adaptive fusion based method can achieve comparable performance to several state-of-the-art approaches on public dataset. (C) 2021 Elsevier B.V. All rights reserved.
机译:最近,深入学习模型提取的丰富特征已被广泛应用于相关滤波器跟踪框架,取得了巨大的成功。 然而,不同层中的特征通常与固定权重结合,这不考虑不同层的不同重要性。 在本文中,我们提出了一种新颖的跟踪方法,其可以自适应地调节不同层中特征所获得的卷积响应的重量。 我们提出了两个自适应加权策略,即余弦加权和二次优化加权,自适应地将权重与每个子模型分配,并组合多个视图子模型。 此外,归一化峰值用于估计跟踪可靠性。 实验结果表明,所提出的自适应融合基于的方法可以在公共数据集上实现对几种最先进的方法的可比性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号