首页> 外文期刊>The Visual Computer >A single-shot multi-level feature reused neural network for object detection
【24h】

A single-shot multi-level feature reused neural network for object detection

机译:单次多级别功能重复使用神经网络进行对象检测

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed the significant progress in object detection using deep convolutional neutral networks. However, there are few object detectors achieving high precision with low computational cost. In this paper, a novel and lightweight framework named multi-level feature reused detector (MFRDet) is proposed, which can reach a better accuracy than two-stage methods. It also can maintain comparable high efficiency of one-stage methods without employing very deep convolution neural networks as most modern detectors do. The proposed framework is suitable for reusing information included in deep and shallow feature maps, by which property the detection precision can be higher. For the Pascal VOC2007 test set trained with VOC 2007 and VOC 2012 training sets, the proposed MFRDet with the input size of 300 x 300 can achieve 80.7% mAP at the speed of 62.5 FPS. As for a high-resolution input version, MFRDet can obtain 82.0% mAP with the speed of 37.0 FPS using single Nvidia Tesla P100 GPU. The proposed framework shows the state-of-the-art mAP with high FPS, which is better than most of other modern object detectors.
机译:近年来,使用深卷积中立网络,目睹了物体检测的重大进展。然而,几乎没有对象探测器实现高精度,计算成本低。在本文中,提出了一种名为Multi-Level特征重复使用检测器(MFRDET)的新颖和轻量级框架,其可以达到比两级方法更好的精度。它还可以保持相当于一阶段方法的高效率,而不会采用非常深的卷积神经网络,因为大多数现代探测器都这样做。所提出的框架适用于在深浅特征映射中包含的信息,其中检测精度可以更高。对于使用VOC 2007和VOC 2012训练训练的Pascal VOC2007测试套装,所提出的MFRDET输入大小为300 x 300,可以以62.5 fps的速度达到80.7%的地图。至于高分辨率输入版本,MFRDET可以获得82.0%的地图,使用单个NVIDIA TESLA P100 GPU获得37.0fps的速度。拟议的框架显示了具有高FP的最先进的地图,优于大多数其他现代物体探测器。

著录项

  • 来源
    《The Visual Computer》 |2021年第1期|133-142|共10页
  • 作者单位

    Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China;

    Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China;

    Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China;

    Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China;

    Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object detection; Deep convolutional neural network; Feature reused;

    机译:对象检测;深卷积神经网络;功能重复使用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号