首页> 外文期刊>The Visual Computer >Video-based social behavior recognition based on kernel relevance analysis
【24h】

Video-based social behavior recognition based on kernel relevance analysis

机译:基于内核相关性分析的视频社会行为识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a kernel-based relevance analysis for video data to support social behavior recognition. Our approach, termed KRAV, is twofold: (i) A feature ranking based on centered kernel alignment (CKA) is carried out to match social semantic features with the output labels (individual and group behaviors). The employed method is an extension of the conventional CKA to mitigate the imbalance effect of unusual human behaviors. (ii) A classification stage to perform the behavior prediction. For concrete testing, the Israel Institute of Technology social behavior database is employed to assess the KRAVunder a tenfold cross-validation scheme. Attained results showthat the proposed approach for the individual recognition task obtains 0.5925 F1 measure using 50 relevant features. Likewise, for the group recognition task obtains 0.8094 F1 measure using 12 relevant features, which in both cases outperforms state-of-the-art results concerning the classification performance and number of employed features. Also, our video-based approach would assist further social behavior analysis from the set of features selected regarding the recognition of individual profiles and group behaviors.
机译:本文提出了一种基于内核的相关性分析,用于视频数据,以支持社会行为识别。我们的方法称为KRAV是双重的:(i)基于居中内核对齐(CKA)的特征排序来执行以匹配具有输出标签(个人和组行为)的社会语义功能。所用方法是常规CKA的延伸,以减轻不寻常的人类行为的不平衡效应。 (ii)分类阶段以执行行为预测。对于具体测试,以色列技术研究所社会行为数据库被用于评估克拉沃德的十倍交叉验证方案。达到的结果表明,使用50个相关特征获得0.5925 F1措施的所提出的方法。同样,对于组识别任务,使用12个相关特征获得0.8094 F1测量,这两种情况都优于涉及分类性能和所用功能的数量的最先进的结果。此外,我们的视频方法将有助于从关于识别个人简档和组行为所选择的一组功能的进一步社交行为分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号