首页> 外文期刊>The Visual Computer >Depth image upsampling based on guided filter with low gradient minimization
【24h】

Depth image upsampling based on guided filter with low gradient minimization

机译:基于带有低梯度最小化的引导滤波器的深度图像上采样

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel upsampling framework to enhance the spatial resolution of the depth image. In our framework, the upscaling of a low-resolution depth image is guided by a corresponding intensity images; we formulate it as a cost aggregation problem with the guided filter. However, the guided filter does not make full use of the information of the depth image. Since depth images have quite sparse gradients, it inspires us to regularize the gradients for improving depth upscaling results. Statistics show a special property of depth images, that is, there is a non-ignorable part of pixels whose horizontal or vertical derivatives are equal to +/- 1. Based on this special property, we propose a low gradient regularization method which reduces the penalty for horizontal or vertical derivative +/- 1, and well describes the statistics of the depth image gradients. Then, we present a solution to the low gradient minimization problem based on threshold shrinkage. Finally, the proposed low gradient regularization is integrated with the guided filter into the depth image upsampling method. Experimental results demonstrate the effectiveness of our proposed approach both qualitatively and quantitatively compared with the state-of-the-art methods.
机译:在本文中,我们提出了一种新的上采样框架,以增强深度图像的空间分辨率。在我们的框架中,低分辨率深度图像的上升由相应的强度图像引导;我们将其制定为带有导向滤波器的成本聚合问题。但是,引导滤波器不会充分利用深度图像的信息。由于深度图像具有相当稀疏的梯度,因此它激发了我们正规化梯度以提高深度上升结果。统计数据显示了深度图像的特殊属性,即,存在的水平或垂直导数等于+/- 1.基于此特殊属性,我们提出了一种低梯度正则化方法,这减少了一种低梯度正则化方法水平或垂直衍生物+/- 1的惩罚,并良好地描述了深度图像梯度的统计数据。然后,我们基于阈值收缩呈现对低梯度最小化问题的解决方案。最后,所提出的低梯度正则化与引导滤波器集成到深度图像上采样方法中。实验结果表明,与最先进的方法相比,我们所提出的方法的有效性和定量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号