首页> 外文期刊>The Visual Computer >Camera-trap images segmentation using multi-layer robust principal component analysis
【24h】

Camera-trap images segmentation using multi-layer robust principal component analysis

机译:使用多层鲁棒主成分分析的相机陷阱图像分割

获取原文
获取原文并翻译 | 示例

摘要

The segmentation of animals from camera-trap images is a difficult task. To illustrate, there are various challenges due to environmental conditions and hardware limitation in these images. We proposed a multi-layer robust principal component analysis (multi-layer RPCA) approach for background subtraction. Our method computes sparse and low-rank images from a weighted sum of descriptors, using color and texture features as case of study for camera-trap images segmentation. The segmentation algorithm is composed of histogram equalization or Gaussian filtering as pre-processing, and morphological filters with active contour as post-processing. The parameters of our multi-layer RPCA were optimized with an exhaustive search. The database consists of camera-trap images from the Colombian forest taken by the Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt. We analyzed the performance of our method in inherent and therefore challenging situations of camera-trap images. Furthermore, we compared our method with some state-of-the-art algorithms of background subtraction, where our multi-layer RPCA outperformed these other methods. Our multi-layer RPCA reached 76.17 and 69.97% of average fine-grained F-measure for color and infrared sequences, respectively. To our best knowledge, this paper is the first work proposing multi-layer RPCA and using it for camera-trap images segmentation.
机译:从相机捕获图像中分割动物是一项艰巨的任务。为了说明,由于环境条件和这些图像中的硬件限制,存在各种挑战。我们提出了一种用于背景扣除的多层鲁棒主成分分析(多层RPCA)方法。我们的方法以颜色和纹理特征为例,通过对摄像头图像分割进行研究,从描述符的加权和中计算出稀疏图像和低阶图像。分割算法由直方图均衡或高斯滤波作为预处理,以及形态学滤波器和活动轮廓作为后处理组成。我们的多层RPCA的参数已通过详尽搜索进行了优化。该数据库由哥伦比亚森林研究所和亚历山大·冯·洪堡摄影所拍摄的哥伦比亚森林相机捕获图像组成。我们分析了在固有的并因此具有挑战性的相机陷印图像情况下该方法的性能。此外,我们将我们的方法与一些最新的背景扣除算法进行了比较,其中我们的多层RPCA优于其他方法。对于彩色和红外序列,我们的多层RPCA分别达到平均细粒度F度量的76.17和69.97%。据我们所知,本文是提出多层RPCA并将其用于相机陷阱图像分割的第一项工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号