首页> 外文期刊>Tellus >On the reliability of computed chaotic solutions of non-linear differential equations
【24h】

On the reliability of computed chaotic solutions of non-linear differential equations

机译:关于非线性微分方程混沌解的可靠性

获取原文
获取原文并翻译 | 示例
       

摘要

A new concept, namely the critical predictable time T_c, is introduced to give a more precise description of computed chaotic solutions of non-linear differential equations: it is suggested that computed chaotic solutions are unreliable and doubtable when t>T_c, This provides us a strategy to detect reliable solution from a given computed result. In this way, the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational prediction uncertainty, which are mainly based on long-term properties of computed time-series, can be completely avoided. Using this concept, the famous conclusion 'accurate long-term prediction of chaos is impossible' should be replaced by a more precise conclusion that 'accurate prediction of chaos beyond the critical predictable time T_c is impossible'. So, this concept also provides us a timescale to determine whether or not a particular time is long enough for a given non-linear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic solution of Lorenz equation in a rather large interval 0 ≤ t < 1200 non-dimensional Lorenz time units is obtained for the first time. It is found that the precision of the initial condition and the computed data at each time step, which is mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically impossible due to the Heisenberg uncertainty principle in quantum physics. This, however, provides us a so-called 'precision paradox of chaos', which suggests that the prediction uncertainty of chaos is physically unavoidable, and that even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more economically.
机译:引入了一个新的概念,即临界可预测时间T_c,以更精确地描述非线性微分方程的计算混沌解:建议当t> T_c时,计算混沌解是不可靠和可疑的,这为我们提供了从给定的计算结果中检测出可靠解决方案的策略。这样,可以完全避免主要基于计算时间序列的长期属性的计算现象,例如计算混乱(CC),计算周期性(CP)和计算预测不确定性。使用这个概念,著名的结论“不可能长期准确地预测混沌”,应由更精确的结论代替,即“不可能在关键的可预测时间T_c之上正确地预测混沌”。因此,该概念还为我们提供了一个时间尺度,以确定特定时间对于给定的非线性动态系统是否足够长。此外,通过使用符号计算软件作为工具,详细研究了数据不准确和各种数值方案对关键可预测时间的影响。首次获得了在0≤t <1200无量纲Lorenz时间单位的较大间隔内的Lorenz方程的可靠混沌解。发现在很长的时间内获得如此可靠的混沌解的数学上必要的初始条件和每个时间步长的计算数据的精度很高,以至于由于海森堡不确定性原理而在物理上是不可能的在量子物理学中。但是,这为我们提供了所谓的“混沌的精确悖论”,这表明混沌的预测不确定性在物理上是不可避免的,甚至宏观现象也可能本质上是随机的,因此可以用更为经济的概率来描述。

著录项

  • 来源
    《Tellus》 |2009年第4期|550-564|共15页
  • 作者

    SHIJUN LIAO;

  • 作者单位

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 01:31:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号