首页> 外文期刊>The Computer journal >Modeling the input history of programs for improved instruction-memory performance
【24h】

Modeling the input history of programs for improved instruction-memory performance

机译:对程序的输入历史进行建模,以提高指令存储器的性能

获取原文
获取原文并翻译 | 示例

摘要

When a program is loaded into memory for execution the relative position of its basic blocks is crucial, since loading basic blocks that are unlikely to be executed first places them high in the instruction-memory hierarchy only to be dislodged as the execution goes on. In this paper, we study the use of Bayesian networks as models of the input history of a program. The main point is the creation of a probabilistic model that persists as the program is run on different inputs and at each new input refines its own parameters in order to reflect the program's input history more accurately. As the model is thus tuned, it causes basic blocks to be reordered so that, upon arrival of the next input for execution, loading the basic blocks into memory automatically takes into account the input history of the program. We report on extensive experiments, whose results demonstrate the efficacy of the overall approach in progressively lowering the execution times of a program on identical inputs placed randomly in a sequence of varied inputs. We provide results on selected SPEC CINT2000 programs and also evaluate our approach as compared with the gcc level-3 optimization and with Pettis-Hansen reordering.
机译:当将程序加载到内存中以执行程序时,其基本块的相对位置至关重要,因为加载不太可能首先执行的基本块会将它们置于指令存储器层次结构中的较高位置,直到执行继续时才将其移出。在本文中,我们研究了使用贝叶斯网络作为程序输入历史的模型。要点是创建一个概率模型,该模型在程序在不同的输入上运行时会持续存在,并且在每个新的输入上都会优化其自己的参数,以便更准确地反映程序的输入历史。由于对模型进行了调整,这导致对基本块进行重新排序,以便在下一个要执行的输入到达时,将基本块自动加载到内存中时会考虑程序的输入历史记录。我们报告了广泛的实验,这些实验的结果证明了整体方法在逐步降低程序在随机输入到一系列不同输入中的相同输入上的执行时间方面的功效。我们提供了一些选定的SPEC CINT2000程序的结果,并与gcc level-3优化和Pettis-Hansen重新排序相比较,评估了我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号