首页> 外文期刊>The Computer journal >A Survey of Outlier Detection Methods in Network Anomaly Identification
【24h】

A Survey of Outlier Detection Methods in Network Anomaly Identification

机译:网络异常识别中异常检测方法的研究

获取原文
获取原文并翻译 | 示例

摘要

The detection of outliers has gained considerable interest in data mining with the realization that outliers can be the key discovery to be made from very large databases. Outliers arise due to various reasons such as mechanical faults, changes in system behavior, fraudulent behavior, human error and instrument error. Indeed, for many applications the discovery of outliers leads to more interesting and useful results than the discovery of inliers. Detection of outliers can lead to identification of system faults so that administrators can take preventive measures before they escalate. It is possible that anomaly detection may enable detection of new attacks. Outlier detection is an important anomaly detection approach. In this paper, we present a comprehensive survey of well-known distance-based, density-based and other techniques for outlier detection and compare them. We provide definitions of outliers and discuss their detection based on supervised and unsupervised learning in the context of network anomaly detection.
机译:认识到离群值可以是从非常大的数据库中发现的关键发现,离群值的检测在数据挖掘中引起了极大的兴趣。异常值是由于各种原因而产生的,例如机械故障,系统行为的变化,欺诈行为,人为错误和仪器错误。实际上,对于许多应用程序而言,离群值的发现比离群值的发现更有趣,更有用。检测离群值可以识别系统故障,以便管理员在升级之前可以采取预防措施。异常检测可能会启用新攻击的检测。离群值检测是重要的异常检测方法。在本文中,我们对众所周知的基于距离,基于密度和其他技术的离群值检测进行了全面调查,并进行了比较。我们提供离群值的定义,并在网络异常检测的背景下基于有监督和无监督的学习讨论其检测。

著录项

  • 来源
    《The Computer journal》 |2011年第4期|p.570-588|共19页
  • 作者单位

    Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur,Assam 784028, India;

    Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur,Assam 784028, India;

    Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur,Assam 784028, India;

    Department of Computer Science, College of Engineering and Applied Science, University of Colorado,Colorado Springs, CO, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anomaly; outlier; nids; density-based; distance-based; unsupervised;

    机译:异常离群值裸体基于密度基于距离的;无监督;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号