首页> 外文期刊>Technological forecasting and social change >CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting
【24h】

CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting

机译:CB-SEM VS PLS-SEM用于社会科学和技术预测研究的方法

获取原文
获取原文并翻译 | 示例

摘要

This study compares the two widely used methods of Structural Equation Modeling (SEM): Covariance based Structural Equation Modeling (CB-SEM) and Partial Least Squares based Structural Equation Modeling (PLSSEM). The first approach is based on covariance, and the second one is based on variance (partial least squares). It further assesses the difference between PLS and Consistent PLS algorithms. To assess the same, empirical data is used. Four hundred sixty-six respondents from India, Saudi Arabia, South Africa, the USA, and few other countries are considered. The structural model is tested with the help of both approaches. Findings indicate that the item loadings are usually higher in PLS-SEM than CB-SEM. The structural relationship is closer to CB-SEM if a consistent PLS algorithm is undertaken in PLS-SEM. It is also found that average variance extracted (AVE) and composite reliability (CR) values are higher in the PLS-SEM method, indicating better construct reliability and validity. CB-SEM is better in providing model fit indices, whereas PLS-SEM fit indices are still evolving. CB-SEM models are better for factor-based models like ours, whereas composite-based models provide excellent outcomes in PLS-SEM. This study contributes to the existing literature significantly by providing an empirical comparison of all the three methods for predictive research domains. The multi-national context makes the study relevant and replicable universally. We call for researchers to revisit the widely used SEM approaches, especially using appropriate SEM methods for factor-based and composite-based models.
机译:该研究比较了两种广泛使用的结构方程建模方法(SEM):基于协方差的基于协方差的基于结构方程模型(CB-SEM)和基于局部最小二乘法的结构方程建模(PLSSEM)。第一种方法是基于协方差,第二个方法基于方差(部分最小二乘)。它进一步评估了PLS和一致的PLS算法之间的差异。为了评估相同的,使用经验数据。从印度,沙特阿拉伯,南非,美国和少数其他国家的四百六十六名受访者。在两种方法的帮助下测试了结构模型。调查结果表明,PLS-SEM通常比CB-SEM更高。如果在PLS-SEM中采用一致的PLS算法,则结构关系更接近CB-SEM。还发现,PLS-SEM方法中提取的平均方差(AVE)和复合可靠性(CR)值较高,表明更好的构造可靠性和有效性。 CB-SEM更好地提供型号拟合指数,而PLS-SEM FIT指数仍在不断发展。 CB-SEM模型对于我们的基于因子的模型更好,而基于复合的模型在PLS-SEM中提供出色的结果。本研究通过提供对预测研究领域的所有三种方法的实证比较来提高现有文献。多国上下文使研究具有普遍性的和复制。我们呼吁研究人员重新审视广泛使用的SEM方法,特别是使用适当的SEM方法进行基于因子和基于复合的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号