首页> 外文期刊>Teaching Mathematics and its Applications >Cubic equations and the ideal trisection of the arbitrary angle
【24h】

Cubic equations and the ideal trisection of the arbitrary angle

机译:三次方程和​​任意角度的理想三等分

获取原文
获取原文并翻译 | 示例

摘要

In the year 1837 mathematical proof was set forth authoritatively stating that it is impossible to trisect an arbitrary angle with a compass and an unmarked straightedge in the classical sense. The famous proof depends on an incompatible cubic equation having the cosine of an angle of 60° and the cube of the cosine of one-third of an angle of 60° as parameters. This article re-examines the cubic equations linked with the trisection of an arbitrary angle and presents evidence showing that, where the arbitrary angle is less than or equal to the maximum central angle of 180°, a cubic equation having the cube of the sine of one-third of half of any central angle as a parameter consistently is compatible with the ideal trisection of the central angle. Amazingly, the sine of one-third of half of any central angle minus one-third of the sine of half of the central angle (a rational operation) consistently is equal to four-thirds times the cube of the sine of one-third of half of the central angle. In view of the consistently compatible cubic equations and other findings presented, perhaps the long-standing proof of impossibility should be re-examined.
机译:1837年,权威地提出了数学证明,证明不可能用罗盘和古典意义上的未标记的直尺将任意角度三等分。著名的证明依赖于一个不相容的三次方程,该方程具有60°角的余弦和60°角的三分之一的余弦立方作为参数。本文重新检查了与任意角度的三等分相联系的三次方程,并提供了证据表明,在任意角度小于或等于最大中心角180°的情况下,三次方程的正弦为始终将任何中心角的一半的三分之一作为参数与中心角的理想三等分兼容。令人惊讶的是,任何中心角的一半的正弦值减去中心角的一半的正弦值的三分之一(理性运算)始终等于正弦的三次方的三分之四。中心角的一半。鉴于始终如一的三次方程和​​其他发现,也许应该重新审查长期存在的不可能性证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号