首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part A >Performance of a neural adaptive tracking controller for multi-input nonlinear dynamical systems in the presence of additive and multiplicative external disturbances
【24h】

Performance of a neural adaptive tracking controller for multi-input nonlinear dynamical systems in the presence of additive and multiplicative external disturbances

机译:存在加性和乘性外部干扰的多输入非线性动力学系统的神经自适应跟踪控制器的性能

获取原文
获取原文并翻译 | 示例

摘要

We discuss the tracking problem in the presence of additive and multiplicative external disturbances, for affine in the control nonlinear dynamical systems, whose nonlinearities are assumed unknown. Based on a recurrent high order neural network (RHONN) model of the unknown plant, a smooth control law is designed to guarantee the uniform ultimate boundedness of all signals in the closed loop. Certain measures are utilized to test its performance. The controller, which can be viewed as a nonlinear combination of three high order neural networks, does not require knowledge regarding upper bounds on the optimal weights, modeling error and external disturbances. Simulations performed on a simple example illustrate the approach.
机译:我们讨论了在存在加性和乘性外部干扰的情况下,对于非线性控制未知的仿射控制非线性系统的仿射问题。基于未知植物的递归高阶神经网络(RHONN)模型,设计了平滑控制律,以确保闭环中所有信号的一致最终有界性。利用某些措施来测试其性能。该控制器可以看作是三个高阶神经网络的非线性组合,不需要了解有关最佳权重上限,建模误差和外部干扰的知识。在一个简单的示例上进行的仿真说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号