首页> 外文期刊>Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on >Modeling Human Recursive Reasoning Using Empirically Informed Interactive Partially Observable Markov Decision Processes
【24h】

Modeling Human Recursive Reasoning Using Empirically Informed Interactive Partially Observable Markov Decision Processes

机译:使用经验丰富的交互式部分可观察的马尔可夫决策过程对人类递归推理建模

获取原文
获取原文并翻译 | 示例

摘要

Recursive reasoning of the form what do I think that you think that I think (and so on) arises often while acting in multiagent settings. Previously, multiple experiments studied the level of recursive reasoning generally displayed by humans while playing sequential general-sum and fixed-sum, two-player games. The results show that subjects experiencing a general-sum strategic game display first or second level of recursive thinking with the first level being more prominent. However, if the game is made simpler and more competitive with fixed-sum payoffs, subjects predominantly attributed first-level recursive thinking to opponents thereby acting using second level. In this article, we model the behavioral data obtained from the studies using the interactive partially observable Markov decision process, appropriately simplified and augmented with well-known models simulating human learning and decision. We experiment with data collected at different points in the study to learn the models parameters. Accuracy of the predictions by our models is evaluated by comparing them with the observed study data, and the significance of the fit is demonstrated by comparing the mean squared error of our model predictions with those of a random hypothesis. Accuracy of the predictions by the models suggest that these could be viable ways for computationally modeling strategic behavioral data in a general way. While we do not claim the cognitive plausibility of the models in the absence of more evidence, they represent promising steps toward understanding and computationally simulating strategic human behavior.
机译:形式的递归推理在多主体设置中执行操作时,我认为您认为我认为(等等)的事情经常发生。以前,多个实验研究了人类在玩序贯的一般和和固定和两人游戏时通常显示的递归推理水平。结果表明,经历一般性和战略游戏的受试者显示第一或第二级递归思维,而第一级则更为突出。但是,如果使游戏变得更简单且具有固定的总和收益,那么主体将第一级递归思维归因于对手,从而使用第二级行动。在本文中,我们使用交互式的部分可观察的马尔可夫决策过程对从研究中获得的行为数据进行建模,并通过模拟人类学习和决策的知名模型对其进行了适当的简化和扩充。我们使用研究中不同点收集的数据进行实验,以了解模型参数。通过将我们的模型预测与观察到的研究数据进行比较来评估其预测的准确性,并通过将我们的模型预测的均方误差与随机假设的均方误差进行比较来证明拟合的重要性。模型预测的准确性表明,这些可能是以一般方式对战略行为数据进行计算建模的可行方法。尽管在没有更多证据的情况下我们并未主张模型的认知合理性,但它们代表了理解和计算机模拟战略人类行为的有希望的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号