首页> 外文期刊>Sustainable Computing >Performance, Energy, and Temperature Enabled Task Scheduling using Evolutionary Techniques
【24h】

Performance, Energy, and Temperature Enabled Task Scheduling using Evolutionary Techniques

机译:使用进化技术的性能,能量和温度启用的任务调度

获取原文
获取原文并翻译 | 示例

摘要

In allocating parallel tasks to cores, most energy and thermal-aware scheduling techniques rely on Dynamic Voltage and Frequency Scaling (DVFS) to mark up and down core speeds for running the system under the desired constraints. While these techniques often meet the imposed system constraints, they are maladroit at identifying the best possible trade-offs between performance and energy, or between performance and temperature. This paper focuses on task-to-core allocation for optimizing performance (P), energy (E), and temperature (T) simultaneously. A solution set yielded by such algorithm comprises of multiple points forming a Pareto-front, not just scalar values. This paper employs Strength Pareto Evolutionary Algorithm (SPEA) and Non-Dominated Sorting Genetic Algorithm (NSGA), which have been demonstrated to be superior evolutionary optimization approaches in several domains. The paper utilizes and compares these techniques in DVFS-based PET-enabled scheduling algorithms, and highlights the differences between the two approaches. The paper also explores how the algorithmic characteristics affect the performance of the scheduling schemes. A variety of criteria combined with extensive experimentation help to compare the two approaches. The results show how varying different system and task parameters affect not just the PET goals individually and collectively but also the quality of trade-offs as well as the spread of solutions on the Pareto-front. (C) 2017 Published by Elsevier Inc.
机译:在将并行任务分配给内核时,大多数能源和热感知调度技术都依赖于动态电压和频率缩放(DVFS)来标记和降低内核速度,以在所需约束下运行系统。尽管这些技术通常满足施加的系统约束,但它们在确定性能与能量之间,或性能与温度之间的最佳折衷方面存在缺陷。本文关注于任务到核心的分配,以同时优化性能(P),能量(E)和温度(T)。通过这种算法产生的解决方案集包括形成Pareto前沿的多个点,而不仅仅是标量值。本文采用了强度帕累托进化算法(SPEA)和非支配排序遗传算法(NSGA),这些方法已被证明是在多个领域中优越的进化优化方法。本文在基于DVFS的基于PET的调度算法中利用并比较了这些技术,并重点介绍了这两种方法之间的差异。本文还探讨了算法特征如何影响调度方案的性能。各种标准与广泛的实验相结合有助于比较这两种方法。结果表明,变化的不同系统和任务参数不仅会单独和共同影响PET目标,而且还会影响权衡的质量以及解决方案在Pareto方面的传播。 (C)2017由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号