首页> 外文期刊>Survey Review >Algebraic method to speed up robust algorithms: example of laser-scanned point clouds
【24h】

Algebraic method to speed up robust algorithms: example of laser-scanned point clouds

机译:加快鲁棒算法速度的代数方法:激光扫描点云示例

获取原文
获取原文并翻译 | 示例
           

摘要

Surface reconstruction from point clouds generated by laser scanning technology has become a fundamental task in many fields of geosciences, such as robotics, computer vision, digital photogrammetry, computational geometry, digital building modelling, forest planning and operational activities. Point clouds produced by laser scanning, however, are limited due to the occurrence of occlusions, multiple reflectance and noise, and off-surface points (outliers), thus necessitating the need for robust fitting techniques. In this contribution, a fast, noniterative and data invariant algebraic algorithm with constant O(1) complexity that fits planes to point clouds in the total least squares sense using Gaussian-type error distribution is proposed. The maximum likelihood estimator method is used, resulting in a multivariate polynomial system that is solved in an algebraic way. It is shown that for plane fitting when datasets are affected heavily by outliers, the proposed algebraic method can be embedded into the framework of robust methods like the Danish or the RANdom SAmple Consensus methods and computed in parallel to provide rigorous algebraic fitting with significantly reduced running times. Compared to the embedded traditional singular value decomposition and principal component analysis approaches, the performance of the proposed algebraic algorithm demonstrated its efficiency on both synthetic data and real laser-scanned measurements. The evaluation of a symbolic algebraic formula is practically independent of the values of its coefficients; however, the computation of the coefficients depends on the complexity of the data. Since the main advantage of the symbolic solution is its nonrequirement of numerical iteration, the data complexity will have weak influence on the speedup. The novelty of the proposed method is the use of algebraic technique in a robust plane fitting algorithm that could be applied to remote sensing data analysis/ delineation/ classification. In general, the method could be applied to most plane fitting problems in the geoscience field.
机译:由激光扫描技术产生的点云进行表面重建已成为地球科学许多领域的一项基本任务,例如机器人技术,计算机视觉,数字摄影测量,计算几何,数字建筑建模,森林规划和运营活动。但是,由于发生遮挡,多重反射和噪声以及离表面点(离群值),因此激光扫描产生的点云受到限制,因此需要鲁棒的拟合技术。在这一贡献中,提出了一种具有不变O(1)复杂度的快速,非迭代且数据不变的代数算法,该算法使用高斯型误差分布将平面拟合到总最小二乘意义上的点云。使用最大似然估计器方法,从而得到以代数方式求解的多元多项式系统。结果表明,对于当数据集受到异常值严重影响时的平面拟合,可以将所提出的代数方法嵌入诸如丹麦或RANdom SAmple Consensus方法之类的鲁棒方法的框架中,并进行并行计算以提供严格的代数拟合,从而显着减少运行次。与嵌入式传统奇异值分解和主成分分析方法相比,该代数算法的性能证明了其在合成数据和实际激光扫描测量中的效率。符号代数公式的求值实际上与系数值无关。但是,系数的计算取决于数据的复杂性。由于符号解决方案的主要优点是不需要数值迭代,因此数据复杂性对加速的影响很小。所提出的方法的新颖之处在于在稳健的平面拟合算法中使用了代数技术,该算法可以应用于遥感数据分析/描绘/分类。通常,该方法可以应用于地球科学领域中的大多数平面拟合问题。

著录项

  • 来源
    《Survey Review》 |2017年第357期|408-418|共11页
  • 作者单位

    Budapest Univ Technol & Econ, Dept Photogrammetry & Geoinformat, Budapest, Hungary;

    Curtin Univ, Western Australian Ctr Geodesy, Perth, WA, Australia|Curtin Univ, Inst Geosci Res, Perth, WA, Australia|KIT, Geodet Inst, Karlsruhe, Germany|Kyoto Univ, Dept Geophys, Kyoto, Japan;

    Budapest Univ Technol & Econ, Dept Photogrammetry & Geoinformat, Budapest, Hungary;

    Fordham Univ, Dept Math, New York, NY 10023 USA;

    Budapest Univ Technol & Econ, Dept Photogrammetry & Geoinformat, Budapest, Hungary;

    KIT, Geodet Inst, Karlsruhe, Germany;

    Kyoto Univ, Dept Geophys, Kyoto, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Surface reconstruction; Maximumlikelihood estimator; Groebner basis; Outliers; RANSAC;

    机译:表面重建;最大似然估计;格罗布纳基础;离群值;RANSAC;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号