首页> 外文期刊>Surface Science >Mechanism of CO_2 hydrogenation over Cu/ZrO_2(212) interface from first-principles kinetics Monte Carlo simulations
【24h】

Mechanism of CO_2 hydrogenation over Cu/ZrO_2(212) interface from first-principles kinetics Monte Carlo simulations

机译:第一原理动力学蒙特卡洛模拟研究Cu / ZrO_2(212)界面上CO_2加氢的机理

获取原文
获取原文并翻译 | 示例

摘要

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, China;rnShanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, China;%It has been a goal consistently pursued by chemists to understand and control the catalytic process over composite materials. In order to provide deeper insight on complex interfacial catalysis at the experimental conditions, we performed an extensive analysis on CO_2 hydrogenation over a Cu/ZrO_2 model catalyst by employing density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations based on the continuous stirred tank model. The free energy profiles are determined for the reaction at the oxygen-rich Cu/m-ZrO_2 (212) interface, where all interfacial Zr are six-coordinated since the interface accumulates oxidative species at the reaction conditions. We show that not only methanol but also CO are produced through the formate pathway dominantly, whilst the reverse-water-gas-shift (RWGS) channel has only a minor contribution. H_2CO is a key intermediate species in the reaction pathway, the hydrogenation of which dictates the high temperature of CO_2 hydrogenation. The kinetics simulation shows that the CO_2 conversion is 1.20%, the selectivity towards methanol is 68% at 500 K and the activation energies for methanol and CO formation are 0.79 and 1.79 eV, respectively. The secondary reactions due to the product readsorption lower the overall turnover frequency (TOF) but increase the selectivity towards methanol by 16%. We also show that kMC is a more reliable tool for simulating heterogeneous catalytic processes compared to the microkinetics approach.
机译:复旦大学化学系上海市分子催化与创新材料重点实验室,计算物理科学重点实验室(教育部),上海200433; rn上海化学系分子催化与创新材料重点实验室,化学系,重点实验室复旦大学计算物理科学部(教育部),上海200433;%化学家一直追求的目标是理解和控制复合材料的催化过程。为了对实验条件下的复杂界面催化提供更深入的了解,我们通过基于密度泛函理论(DFT)的计算和动力学蒙特卡洛(kMC)模拟对Cu / ZrO_2模型催化剂上的CO_2加氢进行了广泛的分析。连续搅拌罐模型。确定了在富氧Cu / m-ZrO_2(212)界面上反应的自由能分布,其中所有界面Zr均为六配位,因为该界面在反应条件下会累积氧化性物质。我们显示不仅通过甲酸盐途径主要产生甲醇,而且还产生CO,而反向水煤气变换(RWGS)通道的贡献很小。 H_2CO是反应路径中的关键中间体,其氢化决定了CO_2氢化的高温。动力学模拟表明,在500 K下,CO_2的转化率为1.20%,对甲醇的选择性为68%,甲醇和CO生成的活化能分别为0.79和1.79 eV。由于产物的再吸收而引起的副反应降低了总周转频率(TOF),但对甲醇的选择性提高了16%。我们还表明,与微动力学方法相比,kMC是模拟异相催化过程的更可靠工具。

著录项

  • 来源
    《Surface Science》 |2010年第22期|p.1869-1876|共8页
  • 作者

    Qi-Jun Hongp; Zhi-Pan Liu;

  • 作者单位

    Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, China;

    rnShanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heterogeneous catalysis; density functional calculations; kinetic Monte Carlo; metal/oxide; CO_2 fixation; Cu/ZrO_2;

    机译:非均相催化密度泛函计算动力学蒙特卡洛金属/氧化物CO_2固定铜/氧化锆_2;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号