首页> 外文期刊>Surface Science >Defect states at organic-inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface
【24h】

Defect states at organic-inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface

机译:有机-无机界面处的缺陷状态:MgO表面季戊四醇四硝酸盐的第一原理计算的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Light-responsive organic-inorganic interfaces offer experimental opportunities that are otherwise difficult to achieve. Since laser light can be manipulated very precisely, it becomes possible to engineer selective, predictive, and highly controlled interface properties. Photochemistry of organic-inorganic energetic interfaces is a rapidly emerging research field in which energy absorption and interface stability mechanisms have yet to be established. To explore the interaction of the laser irradiation with molecular materials, we performed first principle calculations of a prototype organic-inorganic interface between a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a magnesium oxide (MgO) surface. We found that the light absorption is defined by the band alignment between interface components and interfacial charge transfer coupled with electronic states in the band gap, generated by oxide surface defects. Hence the choice of an oxide substrate and its morphology makes the optical absorption tunable and governs both the energy accumulation and energy release at the interface. The obtained results offer a possible consistent interpretation of experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by excitation energy much lower than the band gap. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F-0 centers) at the MgO surface. Our conclusions predict ways for a complete separation of thermo- and photo-stimulated interface chemistry of molecular materials, which is imperative for highly controllable fast decomposition and was not attainable before. The methodology described here can be applied to any type of molecular material/wide band gap dielectric interfaces. It provides a solid basis for novel design and targeted improvements of organic-inorganic interfaces with desired properties that promise to enable vastly new concepts of energy storage and conversion, photocatalysis, and molecular electronics. (C) 2015 Elsevier B.V. All rights reserved.
机译:对光敏感的有机-无机界面提供了实验机会,而这些机会以前很难实现。由于可以非常精确地操纵激光,因此可以设计选择性,预测性和高度受控的界面属性。有机-无机高能界面的光化学是一个迅速发展的研究领域,其中能量吸收和界面稳定机制尚未建立。为了探索激光照射与分子材料的相互作用,我们对硝酸酯(季戊四醇四硝酸酯,PETN,C5H8N4O12)和氧化镁(MgO)表面之间的有机-无机界面原型进行了第一性原理计算。我们发现,光吸收是由界面组分之间的能带对准和界面电荷转移与氧化物表面缺陷产生的带隙中的电子态耦合所决定的。因此,氧化物基底及其形态的选择使光吸收可调,并控制界面处的能量积累和能量释放。获得的结果为高能材料的选择性激光引发实验提供了可能的一致解释,该报告报道了金属氧化物添加剂的存在通过远低于带隙的激发能触发了光引发。我们建议PETN光分解是由MgO表面的氧空位(F-0中心)催化的。我们的结论预测了分子材料的热刺激和光刺激界面化学完全分离的方法,这对于高度可控的快速分解是必不可少的,以前是无法实现的。这里描述的方法可以应用于任何类型的分子材料/宽带隙介电界面。它为具有所需性能的有机-无机界面的新颖设计和有针对性的改进提供了坚实的基础,有望实现全新的能量存储和转换,光催化和分子电子学概念。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号