首页> 外文期刊>Superlattices and microstructures >Performance improvement in novel germanium-tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor
【24h】

Performance improvement in novel germanium-tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor

机译:新型锗锡锗异质结增强型p沟道隧穿场效应晶体管的性能改进

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We design a novel GeSn-based heterojunction-enhanced p-channel tunneling field-effect transistor (HE-PTFET) with a Ge_(0.92)Sn_(0.08)/Ge heterojunction located in channel region, at a distance of L_(T-H) from the Ge_(0.92)Sn_(0.08) source-channel tunneling junction (TJ). HE-PTFETs demonstrate the negative shift of onset voltage V_(onset). the steeper subthreshold swing S, and the improved on-state current I_(On) compared to Ge_(0.92)Sn_(0.08) homo-PTFET. At low V_(Gs). the suppression of BTBT due to the widening of the tunneling barrier caused by the heterojunction leads to a negative shift of V_(onset) in HE-PTFETs. At high V_(Gs), I_(on) enhancement in HE-PTFETs is achieved over the homo device, which is attributed to the confinement of BTBT in Ge_(0.92)Sn_(0.08) source-channel TJ region by the heterojunction, where the short tunneling paths lead to a high tunneling probability. Due to the steeper average S, HE-PTFET with a 6 nm L_(T-H) achieves a 4 times higher I_(On) compared to homo device at a V_(DD) of -0.3 V.
机译:我们设计了一种新型的基于GeSn的异质结增强型p沟道隧穿场效应晶体管(HE-PTFET),其Ge_(0.92)Sn_(0.08)/ Ge异质结位于沟道区,与L_(TH)的距离为Ge_(0.92)Sn_(0.08)源-通道隧穿结(TJ)。 HE-PTFETs显示了起始电压V_(onset)的负向偏移。与Ge_(0.92)Sn_(0.08)homo-PTFET相比,亚阈值摆幅S陡峭,通态电流I_(On)有所改善。 V_(Gs)低时。由于异质结引起的隧穿势垒变宽而对BTBT的抑制导致HE-PTFET中V_(起始)的负移。在高V_(Gs)时,HE-PTFET中的I_(on)增强通过均质器件实现,这归因于BTBT在异质结的Ge_(0.92)Sn_(0.08)源通道TJ区中的限制,其中短的隧道路径导致较高的隧道概率。由于平均S值陡峭,因此L_(T-H)为6 nm的HE-PTFET在V_(DD)为-0.3 V时,其I_(On)是均质器件的4倍。

著录项

  • 来源
    《Superlattices and microstructures》 |2015年第7期|401-410|共10页
  • 作者单位

    Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, 400044, China;

    Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, 400044, China;

    Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, 400044, China;

    Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, 400044, China;

    Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an 710071, China;

    Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an 710071, China;

    Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an 710071, China;

    Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an 710071, China;

    Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, 400044, China,Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an 710071, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tunneling field effect transistor (TFET); Band to band tunneling (BTBT); Germanium-tin; Heterostructure;

    机译:隧道场效应晶体管(TFET);带对隧道(BTBT);锗锡;异质结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号