首页> 外文期刊>Studies in Informatics and Control >Parallelized Multiple Swarm Artificial Bee Colony (PMS- ABC) Algorithm for Constrained Optimization Problems*
【24h】

Parallelized Multiple Swarm Artificial Bee Colony (PMS- ABC) Algorithm for Constrained Optimization Problems*

机译:并行化多方群人为蜜蜂菌落(PMS-ABC)算法,用于约束优化问题*

获取原文
获取原文并翻译 | 示例

摘要

Since their introduction, bio-inspired algorithms, especially the ones based on the social behaviour of the animals that live in colonies have demonstrated great potential in finding near-optimal solutions for both unconstrained and constrained hard optimization problems. In this research, a parallel version of the popular Artificial Bee Colony (ABC) algorithm for optimization of constrained problems, has been introduced. An island-based model, in which the whole population is divided into subpopulations, is used. Subpopulations execute the serial version of the original algorithm and occasionally exchange the obtained results. The proposed algorithm has been tested based on a set of well-known constraint benchmark functions and five real-world engineering design problems. The results demonstrate clear improvements compared with those obtained with the original ABC algorithm.
机译:自从他们的介绍以来,生物启发算法,尤其是基于生活在菌落中的动物的社会行为的算法已经表现出巨大的潜力在寻找无关紧要和受限制的硬度优化问题的接近最佳解决方案。在本研究中,已经介绍了一种流行的人造群菌落(ABC)算法的平行版本,用于优化受约束性问题。使用基于岛的模型,其中整个人群被分为群体。子本间执行原始算法的序列版本,偶尔会更换所获得的结果。该算法已经基于一组众所周知的约束基准功能和五个现实世界工程设计问题来测试。结果表明,与原始ABC算法获得的那些相比,显然改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号