首页> 外文期刊>Studies in Informatics and Control >Combining Deep Learning Technologies with Multi-Level Gabor Features for Facial Recognition in Biometric Automated Systems
【24h】

Combining Deep Learning Technologies with Multi-Level Gabor Features for Facial Recognition in Biometric Automated Systems

机译:在生物识别自动化系统中对多级Gabor特征来组合深度学习技术

获取原文
获取原文并翻译 | 示例

摘要

Face recognition is one of the most important abilities that humans use in their daily lives. It represents a natural, robust and non-intrusive manner for identifying individuals. However, it is also a very challenging problem in the field of computer vision and pattern recognition. A good face recognition algorithm should be able to automatically detect and recognize a face in an image, regardless of lightning, expression, illumination and pose. In this paper, we present a novel approach for the face model representation and matching issues in face recognition. Our approach is based on multi-level Gabor features and Deep Learning techniques. In the experiments presented in this paper, ORL, Caltech, Yale and Yale B databases were used in order to obtain the face recognition rate. The results show that the new face recognition algorithm outperforms the conventional methods such as global Gabor face recognition based on PCA in terms of recognition rate.
机译:人类识别是人类在日常生活中使用的最重要的能力之一。它代表了识别个人的自然,强大和非侵入性的方式。然而,在计算机视觉和模式识别领域也是一个非常具有挑战性的问题。良好的面部识别算法应该能够自动检测和识别图像中的面部,无论闪电,表达,照明和姿势如何。本文介绍了面部模型表示和面部识别中匹配问题的新方法。我们的方法是基于多级Gabor特征和深度学习技术。在本文提出的实验中,使用ORL,CALTECH,YALE和YALE B数据库以获得面部识别率。结果表明,新的面部识别算法在识别率方面基于PCA的全局Gabor面部识别等传统方法优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号