首页> 外文期刊>Studies in Informatics and Control >Neural Network and Fuzzy-logic-based Self-tuning PID Control for Quadcopter Path Tracking
【24h】

Neural Network and Fuzzy-logic-based Self-tuning PID Control for Quadcopter Path Tracking

机译:神经网络和基于模糊逻辑的自整定PID控制的四轴飞行器路径跟踪

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is to design adaptive control methods for addressing the stabilization and trajectory tracking problems in a quadcopter unmanned aerial vehicle (UAV). To accomplish these tasks, a comparative study of the Proportional Integral Derivative (PID) and PD controllers is performed. Intelligent algorithms (lAs) have been used to tune the conventional structure of PID/PD controllers. The proposed hybrid intelligent controllers consist of the neural network PID/PD (NNPID/PD) and the Optimized Fuzzy PID/PD based on the Particle Swarm Optimization (FPID/PDPSO). Adaptive neural networks are deployed to schedule PID/PD gains, the improved back-propagation algorithm is used to update the weights of the neural network. Then, an effective control approach based on adaptive PID Fuzzy logic and Particle Swarm Optimization (PSO) algorithm has been applied. PSO algorithm is introduced to adjust the scaling factors for improving the convergence speed and production rate. Finally, in order to demonstrate the robustness of the proposed control methods, disturbances in the quadcopter system are added. The results so obtained demonstrate the effectiveness of the proposed control strategy.
机译:这项研究的目的是设计一种自适应控制方法,以解决四旋翼无人机(UAV)的稳定和轨迹跟踪问题。为了完成这些任务,对比例积分微分(PID)和PD控制器进行了比较研究。智能算法(IA)已用于调整PID / PD控制器的常规结构。提出的混合智能控制器由神经网络PID / PD(NNPID / PD)和基于粒子群优化(FPID / PDPSO)的优化模糊PID / PD组成。部署了自适应神经网络来调度PID / PD增益,改进的反向传播算法用于更新神经网络的权重。然后,提出了一种基于自适应PID模糊逻辑和粒子群算法的有效控制方法。引入PSO算法来调整比例因子,以提高收敛速度和生产率。最后,为了证明所提出的控制方法的鲁棒性,增加了四轴飞行器系统的干扰。如此获得的结果证明了所提出的控制策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号