首页> 外文期刊>Studies in Informatics and Control >A Hybrid Swarm Optimization Approach for Document Binarization
【24h】

A Hybrid Swarm Optimization Approach for Document Binarization

机译:用于文档二值化的混合群优化方法

获取原文
获取原文并翻译 | 示例

摘要

Thebinarizationprocessisthepreliminaryandmostsignificantphaseofthedocumentimageanalysisapplications. A hybrid approach based on the merger of Salp swarm algorithm and the chaos theory is introduced. The proposed hybrid approach has been used to evaluate their ability and precision in the clustering process. It is revealed how Salp can operate to find automatically the centroid of a defined number of clusters using K-means objective function. Several different chaotic maps are integrated to adjust the behavior of the Salps by calibrating their random numbers. The efficiency of the proposed chaotic Salp swarm algorithm is empirically verified on the Document Image Binarization Contest H-DIBCO 2016 dataset. A comparison made between the proposed approach and some of the state-of-the-art methods in terms of F-Measure, Peak Signal to Noise Ratio and pseudo-F-Measure. In addition, Geometric-mean pixel accuracy, Distance Reciprocal Distortion Metric, Negative Rate Metric and Misclassification Penalty Metric are shown and discussed.
机译:二进制化过程是文档图像分析应用程序的初步且最重要的阶段。介绍了基于Salp群算法和混沌理论相结合的混合方法。提出的混合方法已用于评估其在聚类过程中的能力和精度。揭示了Salp如何使用K均值目标函数自动查找定义数目的聚类的质心。集成了几种不同的混沌图,通过校准随机数来调整Salps的行为。在文档图像二值化竞赛H-DIBCO 2016数据集上通过经验验证了所提出的混沌Salp群算法的效率。在F测量,峰值信噪比和伪F测量方面,将所提出的方法与一些最新方法进行了比较。此外,还显示并讨论了几何平均像素精度,距离互惠失真度量标准,负速率度量标准和误分类惩罚度量标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号