首页> 外文期刊>Studies in Informatics and Control >Bio Inspired Modified Internal Model Control Approach for Improved Disturbance Rejection of Piezo Micro Manipulator
【24h】

Bio Inspired Modified Internal Model Control Approach for Improved Disturbance Rejection of Piezo Micro Manipulator

机译:生物启发的改进内模控制方法,用于改善压电微机械手的干扰消除

获取原文
获取原文并翻译 | 示例

摘要

Classical Internal Model Control based approach for controller design has been used in different industrial control applications as it allows good set point tracking performance, especially for processes neglecting time delay. However, in many process control applications including nonlinear piezo electric actuation (PZA), disturbance rejection plays an important role compared to set point tracking. The present research firstly proposes an optimal filter design in series with a Modified Internal Model Control (M-IMC) based Proportional - Integral-Derivative (PID) controller for better set point tracking, improved disturbance rejection with reduced controller hardware resource requirement compared to classical IMC. Two efficient swarm intelligence based evolutionary soft computational techniques viz. Particle Swarm Optimization (PSO) and Bacterial Foraging Optimization (BFO) are then exploited towards optimizing a control evaluation index based fitness function to design the M-IMC control parameters, including filter time constant. The distillation of bio inspired principles in control is seen to exhibit exciting results when the optimized parameters are utilized in the piezo plant modeled using a Dahl based second order system. The performance of the controller has been evaluated by subjecting the plant to several perturbations as well as to external disturbances. The results illustrate the efficiency of the PSO based M-IMC over other controllers.
机译:基于经典内部模型控制的控制器设计方法已在不同的工业控制应用中使用,因为它具有良好的设定点跟踪性能,尤其是对于忽略时间延迟的过程。但是,在包括非线性压电驱动(PZA)在内的许多过程控制应用中,与设定点跟踪相比,干扰抑制起着重要的作用。本研究首先提出了一种优化的滤波器设计,该滤波器与基于改进的内部模型控制(M-IMC)的比例-积分-微分(PID)控制器相串联,以实现更好的设定点跟踪,与传统控制器相比,减少了控制器硬件资源需求,改善了干扰抑制IMC。两种基于有效群体智能的进化软计算技术。然后,利用粒子群优化(PSO)和细菌觅食优化(BFO)来优化基于控制评估指标的适应度函数,以设计M-IMC控制参数,包括滤波器时间常数。当在基于Dahl的二阶系统建模的压电设备中利用优化的参数时,可以看到在控制中激发出生物灵感原理的过程显示出令人振奋的结果。控制器的性能已通过使工厂受到多种干扰以及外部干扰的方式进行评估。结果说明了基于PSO的M-IMC在其他控制器上的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号