首页> 外文期刊>Studies in Informatics and Control >An Integrated Cluster Analysis and Validity Test Platform for the Compression-based Clustering Approach
【24h】

An Integrated Cluster Analysis and Validity Test Platform for the Compression-based Clustering Approach

机译:基于压缩的聚类方法的集成聚类分析和有效性测试平台

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the compression based clustering and aims to determine the most suitable combinations of algorithms for different clustering contexts (text, heterogeneous data, Web pages, metadata and so on) and establish whether using compression with traditional clustering methods leads to better performance. In this context, we propose an integrated cluster analysis test platform, called EasyClustering, which incorporates two subsystems: a clustering component and a cluster validity expert system, which automatically determines the quality of a clustering solution by computing the FScore value. The experimental results are focused on two main directions: determining the best approach for compression based clustering in terms of context, compression algorithms and clustering algorithms, and validating the functionality of the cluster analysis expert system for determining the quality of the clustering solutions. After conducting a set of 324 clustering tests, we concluded that compressing the input when using traditional clustering methods increases the quality of the clustering solutions, leading to results comparable to the NCD and the cluster analysis expert system proved 100% its accuracy so far, so we estimate that, even if some slight deviation should occur, it will be minimal.
机译:本文着重于基于压缩的聚类,旨在针对不同的聚类上下文(文本,异构数据,网页,元数据等)确定最合适的算法组合,并确定是否将压缩与传统聚类方法一起使用是否会带来更好的性能。在这种情况下,我们提出了一个名为EasyClustering的集成集群分析测试平台,该平台包含两个子系统:集群组件和集群有效性专家系统,该系统通过计算FScore值自动确定集群解决方案的质量。实验结果集中在两个主要方向上:根据上下文,压缩算法和聚类算法确定基于压缩的最佳聚类方法,以及验证聚类分析专家系统确定聚类解决方案质量的功能。在进行了一组324个聚类测试后,我们得出结论,使用传统的聚类方法压缩输入可以提高聚类解决方案的质量,从而获得与NCD相当的结果,并且聚类分析专家系统到目前为止证明了其准确性100%,我们估计,即使发生一些轻微的偏差,也将是最小的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号