首页> 外文期刊>Studies in Informatics and Control >Dorsal Hand Vein Pattern Analysis and Neural Networks for Biometric Authentication
【24h】

Dorsal Hand Vein Pattern Analysis and Neural Networks for Biometric Authentication

机译:背手静脉图案分析和神经网络用于生物识别

获取原文
获取原文并翻译 | 示例

摘要

Over the past several years, the subcutaneous blood vessels have emerged as a new solution for identity management. Biometric systems based on hand veins are considered to be very promising for high security environments. In this paper, we propose a novel user authentication approach based on dorsal hand vein pattern analysis and multi-layer perceptron neural network classification. For image processing two different techniques are employed: rotation invariant Hough transform and clustering based segmentation and mathematic morphology. Both approaches lead to binary images containing the vein patterns. The vessel structure corresponding to hand image samples of the same user are used to extract the final features, independent of hand rotation and distance to the camera lens during acquisition. These characteristics are used to train the neural network, whereas are computed for the new input images to be classified as corresponding to one of the legitimate subjects or not. The experimental analysis shows that user classification with an equal error rate of 0.83% can be attained, bringing the advantages of proposed image processing techniques for vein detection and neural network classification into complete synergy.
机译:在过去的几年中,皮下血管已经成为身份管理的新解决方案。对于高安全性环境,基于手静脉的生物识别系统被认为非常有前途。在本文中,我们提出了一种基于手背静脉模式分析和多层感知器神经网络分类的新型用户身份验证方法。对于图像处理,采用了两种不同的技术:旋转不变霍夫变换和基于聚类的分割和数学形态学。两种方法均导致包含静脉图案的二进制图像。对应于同一用户的手部图像样本的血管结构用于提取最终特征,而与采集过程中手部旋转和到相机镜头的距离无关。这些特征用于训练神经网络,而针对要分类为与合法对象之一相对应的新输入图像进行计算。实验分析表明,可以实现等错误率达0.83%的用户分类,从而使提出的用于静脉检测和神经网络分类的图像处理技术的优势完全融合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号