首页> 外文期刊>Structural and Multidisciplinary Optimization >Reduced representations of vector-valued coupling variables in decomposition-based design optimization
【24h】

Reduced representations of vector-valued coupling variables in decomposition-based design optimization

机译:向量值耦合变量在基于分解的设计优化中的简化表示

获取原文
获取原文并翻译 | 示例

摘要

Decomposition-based optimization strategies decouple a system design problem and introduce coupling variables as decision variables that manage communication among subproblems. The computational cost of such approaches is comparable to that of the equivalent, yet usually unsuccessful, attempts to solve the coupled system directly when the coupling variables consist of a small, finite number of scalars. When the coupling variables are infinite-dimensional quantities, such as functional data, implementing decomposition-based optimization strategies may become computationally challenging. Discretization is typically applied, transforming infinite-dimensional variables into finite-dimensional ones represented as vectors. A large number of discretized points is often necessary to ensure a sufficiently accurate representation of the functional data, and so the dimensionality of these vector-valued coupling variables (VVCVs) can become prohibitively large for decomposition-based design optimization. Therefore, it is desirable to approximate the VVCVs with a reduced dimension representation that improves optimization efficiency while preserving sufficient accuracy. We investigate two VVCV representation techniques, radial-basis function artificial neural networks and proper orthogonal decomposition, and implement each in an analytical target cascading problem formulation for electric vehicle powertrain system optimization. Specifically, both techniques are applied to VVCVs associated with motor boundary torque curves and power loss maps and are assessed in terms of dimensionality reduction, computational expense, and accuracy.
机译:基于分解的优化策略将系统设计问题解耦,并引入耦合变量作为管理子问题之间通信的决策变量。当耦合变量由少量有限数量的标量组成时,此类方法的计算成本可与等效方法(但通常不成功)直接尝试求解耦合系统的计算成本相当。当耦合变量是无限维度的量(例如功能数据)时,实现基于分解的优化策略可能会在计算上带来挑战。通常应用离散化,将无穷维变量转换为表示为矢量的无穷维变量。为了确保足够准确地表示功能数据,通常需要大量离散点,因此,对于基于分解的设计优化,这些矢量值耦合变量(VVCV)的维数可能变得过大。因此,期望以减小的尺寸表示来近似VVCV,其在保持足够的精度的同时提高了优化效率。我们研究了两种VVCV表示技术,径向基函数人工神经网络和适当的正交分解,并在电动汽车动力总成系统优化的分析目标级联问题公式中实现了每种方法。具体地,这两种技术都被应用于与电动机边界转矩曲线和功率损失图相关联的VVCV,并且在降维,计算费用和准确性方面进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号