首页> 外文期刊>Structural equation modeling >A Bayesian Approach to a Multiple-Group Latent Class-Profile Analysis: The Timing of Drinking Onset and Subsequent Drinking Behaviors Among U.S. Adolescents
【24h】

A Bayesian Approach to a Multiple-Group Latent Class-Profile Analysis: The Timing of Drinking Onset and Subsequent Drinking Behaviors Among U.S. Adolescents

机译:多组潜在类别资料分析的贝叶斯方法:美国青少年的饮酒时间及随后的饮酒行为

获取原文
获取原文并翻译 | 示例

摘要

This article presents a multiple-group latent class-profile analysis (LCPA) by taking a Bayesian approach in which a Markov chain Monte Carlo simulation is employed to achieve more robust estimates for latent growth patterns. This article describes and addresses a label-switching problem that involves the LCPA likelihood function, which has multiple equivalent modes because it is invariant to permutations of class and profile labels. Our solution involves a dynamic data-dependent prior that can break the symmetry of the posterior distribution via preclassification of one or more individuals into latent subgroups. The article demonstrates this LCPA approach in an estimation of the effect of early-onset drinking on subsequent drinking behaviors among adolescents. The data are from a subsample of 4,773 adolescents (12-14 years old in 1997) studied in the National Longitudinal Survey of Youth 1997. The estimation results provide support for the view that patterns of sequential latent growth depend on the timing of drinking onset.
机译:本文通过采用贝叶斯方法,提出了多组潜在类别分析(LCPA),其中采用了马尔可夫链蒙特卡罗模拟来实现对潜在增长模式的更可靠估计。本文介绍并解决涉及LCPA似然函数的标签切换问题,该问题具有多个等效模式,因为它对于类和配置文件标签的排列是不变的。我们的解决方案涉及动态数据相关先验,该先验可以通过将一个或多个个体预先分类为潜在子组来打破后验分布的对称性。这篇文章证明了这种LCPA方法可用于评估青少年早期饮酒对随后饮酒行为的影响。数据来自于1997年全国青年纵向调查中研究的4773名青少年(1997年为12-14岁)的子样本。估计结果为以下观点提供了支持:连续潜伏生长的模式取决于饮酒发作的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号