首页> 外文期刊>Structural Control and Health Monitoring >Bayesian estimation of acoustic emissions source in plate structures using particle-based stochastic filtering
【24h】

Bayesian estimation of acoustic emissions source in plate structures using particle-based stochastic filtering

机译:基于粒子的随机滤波的板结构声发射源贝叶斯估计

获取原文
获取原文并翻译 | 示例

摘要

The application of particle-based stochastic filters to acoustic emission source localization in plate structures is presented. The approach employs time-of-flight measurements of guided waves using triangulation to estimate the acoustic emission source coordinates in a probabilistic framework using Bayesian inference, incorporating uncertainties related to material properties, measurement noise, and geometry of the system of interest. The estimate of the source location is given by a probability density function conditional on the guided wave measurements, found using particle-based stochastic simulation algorithms; in this setting, a set of particles is used to explore the space of possible source locations and efficiently estimate the posterior. The use of 2 filters is explored: the ensemble Kalman filter and the particle filter. The former filter assumes that the posterior distribution can be approximated by a Gaussian distribution, although the latter provides a nonparametric estimate of the posterior in the form of a weighted set of samples, overcoming the challenges related to the evaluation of high-dimensional integrals in an efficient way. Results of an experimental validation study conducted in a laboratory environment demonstrate the accuracy and efficiency of the particle filter-based approach. In particular, it is shown that the proposed particle filter-based approach has the capability to locate the emission source under minimal instrumentation, providing confidence intervals as a quantitative measure of the uncertainty in the estimates.
机译:提出了基于粒子的随机滤波器在板结构声发射源定位中的应用。该方法采用三角测量法对导波进行飞行时间测量,以贝叶斯推断在概率框架中估计声发射源坐标,并结合了与材料特性,测量噪声和目标系统的几何形状有关的不确定性。源位置的估计是由概率密度函数给出的,该函数以导波测量为条件,使用基于粒子的随机模拟算法找到;在这种情况下,使用一组粒子来探索可能的源位置的空间并有效地估计后验。探索了两种过滤器的使用:集成卡尔曼过滤器和粒子过滤器。前者假设后验分布可以用高斯分布近似,尽管后者以加权样本集的形式提供了后验的非参数估计,从而克服了与评估高维积分相关的挑战。有效的方法。在实验室环境中进行的实验验证研究的结果证明了基于粒子过滤器的方法的准确性和效率。特别地,表明所提出的基于粒子滤波器的方法具有在最小仪器下定位排放源的能力,提供了置信区间作为估计中不确定性的定量度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号