首页> 外文期刊>Structural Control and Health Monitoring >Concrete dam deformation prediction model for health monitoring based on extreme learning machine
【24h】

Concrete dam deformation prediction model for health monitoring based on extreme learning machine

机译:基于极限学习机的混凝土坝健康监测变形预测模型

获取原文
获取原文并翻译 | 示例

摘要

Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)-based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of s with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring.
机译:通过可反映混凝土坝行为的数量(例如水平和垂直位移,旋转,应力和应变,渗漏等)来进行结构健康监测,是正确评估混凝土坝运行状态并准确预测未来结构行为的重要方法。 。传统上,统计模型广泛应用于实际工程中的结构健康监测。本文提出了一种基于极限学习机(ELM)的健康监测模型,用于重力坝的位移预测。 ELM是具有单层隐藏节点的s的一种,其中将输入连接到隐藏节点的权重是随机分配的。与使用反向传播算法训练的网络相比,该模型可以产生良好的泛化性能,并且学习速度更快。 ELM健康监测模型的操作简便,预测精度高,训练速度快等优点已通过对实际混凝土大坝的监测数据得到验证。还将结果与反向传播神经网络,多元线性回归和逐步回归模型进行大坝健康监测的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号