首页> 外文学位 >Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring.
【24h】

Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring.

机译:先进材料的多尺度建模,用于损伤预测和结构健康监测。

获取原文
获取原文并翻译 | 示例

摘要

Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and geometric variability in polymer matrix composites, and provide an accurate and computational efficient modeling scheme for simulating guided wave excitation, propagation, interaction with damage, and sensing in a range of materials. The methodologies presented in this research represent substantial progress toward the development of an accurate and generalized virtual SHM framework.
机译:包括纤维增强聚合物和陶瓷基复合材料在内的先进航空航天材料正越来越多地用于关键和苛刻的应用中,对当前的损伤预测,检测和量化方法提出了挑战。与传统的分析技术相比,多尺度计算模型具有关键优势,并且可以为开发全面的虚拟结构健康状况监视(SHM)框架提供必要的功能。虚拟SHM可以通过耦合模型的互补功能来极大地改善航空航天组件的设计和分析,这些模型能够预测在各种载荷和环境情况下损害的发生和传播,模拟用于损伤检测和量化的询问方法,并评估结构的健康状况。虚拟SHM框架的主要组成部分包括具有基于微力学的多尺度复合模型,该模型可以在机械和热载荷条件下以及存在微观结构复杂性和可变性的情况下提供复合材料系统的弹性,非弹性和损伤行为。量化几何结构和建筑变异性在复合微观结构中在局部和全局复合行为中所起的作用,对于开发适用于尺度的单位尺度和多尺度模型的边界条件至关重要。一旦预测了复合材料的行为并评估了变异性影响,基于波浪的SHM模拟模型就可以提供有关复合材料中存在的损坏的检测概率和表征精度的知识。本文的研究为高级航空材料的综合SHM框架奠定了基础。所开发的模型增强了陶瓷基复合材料加工造成的损伤形成的预测,增进了对聚合物基复合材料中建筑和几何可变性影响的理解,并提供了一种精确且计算有效的建模方案来模拟导波的激发,传播,与损坏的相互作用以及对多种材料的感知。本研究中介绍的方法论代表了在开发准确,通用的虚拟SHM框架方面的实质性进展。

著录项

  • 作者

    Borkowski, Luke.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Mechanical.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号