首页> 外文期刊>Structural Control and Health Monitoring >Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images
【24h】

Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images

机译:基于消费级相机图像的受限Boltzmann机器算法识别钢结构表面裂纹的框架

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an identification framework based on a restricted Boltzmann machine (RBM) for crack identification and extraction from images containing cracks and complicated background inside steel box girders of bridges. The original images that include fatigue crack and other background information are obtained by a consumer-grade camera inside the steel box girder. The original images are cut into a number of elements with small size as the input dataset, and a state representation vector is artificially labeled to every image element used for the crack identification. A deep learning model or network consisting of multiple processing RBM layers to learn the abstract features is constructed to match the input image elements with corresponding state representation vectors. Next, a three-layer RBM with 500; 500; and 2,000 hidden units is trained as the hidden layers in the deep learning network. A contrastive divergence learning algorithm is employed for training the deep network to update and obtain the optimal parameters (i.e., the biases and weights). The new input image elements labeled as crack are sorted out and assembled to form an output image. A deep network is modeled through the consumer-grade camera images containing cracks and complicated background information using the proposed approach. The accuracy and ability to identify cracks from new images with different resolutions using the trained deep network are validated. Furthermore, effects of element size on reconstruction error and identification accuracy are investigated. The results show that there exists optimal element size; that is, too small and too large element sizes both increase the reconstruction error and decrease the identification accuracy.
机译:本文提出了一种基于约束玻尔兹曼机(RBM)的识别框架,用于从桥梁钢箱梁内部包含裂纹和复杂背景的图像中识别和提取裂纹。包含疲劳裂纹和其他背景信息的原始图像是通过钢箱梁内部的消费级相机获得的。原始图像被切成许多小尺寸的元素作为输入数据集,并且状态表示向量被人工标记到用于裂缝识别的每个图像元素上。深度学习模型或网络由多个处理的RBM层组成,以学习抽象特征,从而将输入图像元素与相应的状态表示向量进行匹配。接下来,一个三层的RBM有500; 500; 2,000个隐藏单元被训练为深度学习网络中的隐藏层。采用对比散度学习算法来训练深度网络以更新并获得最佳参数(即偏差和权重)。标记并标记为裂纹的新输入图像元素会被整理出来,以形成输出图像。使用提议的方法,通过包含裂缝和复杂背景信息的消费级相机图像对深层网络进行建模。使用训练有素的深层网络验证了从具有不同分辨率的新图像中识别裂缝的准确性和能力。此外,研究了元件尺寸对重构误差和识别精度的影响。结果表明,存在最优的元素尺寸。也就是说,元件尺寸太小和太大都会增加重建误差并降低识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号