首页> 外文期刊>Stochastics and Dynamics >HAUSDORFF DIMENSION OF CERTAIN RANDOM SELF-AFFINE FRACTALS
【24h】

HAUSDORFF DIMENSION OF CERTAIN RANDOM SELF-AFFINE FRACTALS

机译:某些随机自仿射分数的豪索夫维数

获取原文
获取原文并翻译 | 示例

摘要

In this work we are interested in the self-affine fractals studied by Gatzouras and Lalleyn[5] and by the author [11] who generalize the famous general Sierpinski carpets studiednby Bedford [1] and McMullen [13]. We give a formula for the Hausdorff dimension ofnsets which are randomly generated using a finite number of self-affine transformationsneach generating a fractal set as mentioned before. The choice of the transformation isnrandom according to a Bernoulli measure. The formula is given in terms of the variationalnprinciple for the dimension.
机译:在这项工作中,我们对Gatzouras和Lalleyn [5]和作者[11]研究了自仿射形的兴趣,他们对Bedford [1]和McMullen [13]研究的著名的普通Sierpinski地毯进行了概括。我们给出了Hausdorff维数子集的公式,该子集是使用有限数量的自仿射变换随机生成的,每一个都生成一个分形集,如上所述。根据伯努利度量,转换的选择是随机的。该公式是根据尺寸的变化原理给出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号