首页> 外文期刊>Statistics and computing >A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences
【24h】

A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences

机译:用于估计医学图像序列中模板和变形参数的SAEM算法

获取原文
获取原文并翻译 | 示例

摘要

This paper is about object deformations observed throughout a sequence of images. We present a statistical framework in which the observed images are defined as noisy realizations of a randomly deformed template image. In this framework, we focus on the problem of the estimation of parameters related to the template and deformations. Our main motivation is the construction of estimation framework and algorithm which can be applied to short sequences of complex and highly-dimensional images. The originality of our approach lies in the representations of the template and deformations, which are defined on a common triangulated domain, adapted to the geometry of the observed images. In this way, we have joint representations of the template and deformations which are compact and parsimonious. Using such representations, we are able to drastically reduce the number of parameters in the model. Besides, we adapt to our framework the Stochastic Approximation EM algorithm combined with a Markov Chain Monte Carlo procedure which was proposed in 2004 by Kuhn and Lavielle. Our implementation of this algorithm takes advantage of some properties which are specific to our framework. More precisely, we use the Markovian properties of deformations to build an efficient simulation strategy based on a Metropolis-rnHasting-Within-Gibbs sampler. Finally, we present some experiments on sequences of medical images and synthetic data.
机译:本文涉及在整个图像序列中观察到的物体变形。我们提出了一个统计框架,其中观察到的图像被定义为随机变形模板图像的嘈杂实现。在这个框架中,我们关注与模板和变形有关的参数估计问题。我们的主要动机是构建可应用于复杂和高维图像的短序列的估计框架和算法。我们方法的独创性在于模板和变形的表示形式,它们在共同的三角区域上定义,适合于所观察图像的几何形状。这样,我们就可以使模板和变形的联合表示变得紧凑而简约。使用这样的表示,我们能够大幅度减少模型中的参数数量。此外,我们将2004年由Kuhn和Lavielle提出的Markov Chain Monte Carlo程序与随机近似EM算法相结合,适应了我们的框架。我们对该算法的实现利用了一些特定于我们框架的属性。更准确地说,我们使用变形的马尔可夫特性建立基于Metropolis-rnHasting-In-Gibbs采样器的有效仿真策略。最后,我们提出一些关于医学图像和合成数据序列的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号