首页> 外文期刊>Statistics and computing >Automatic Bayesian quantile regression curve fitting
【24h】

Automatic Bayesian quantile regression curve fitting

机译:贝叶斯分位数自动回归曲线拟合

获取原文
获取原文并翻译 | 示例

摘要

Quantile regression, including median regression, as a more completed statistical model than mean regression, is now well known with its wide spread applications. Bayesian inference on quantile regression or Bayesian quantile regression has attracted much interest recently. Most of the existing researches in Bayesian quantile regression focus on parametric quantile regression, though there are discussions on different ways of modeling the model error by a parametric distribution named asymmetric Laplace distribution or by a nonparametric alternative named scale mixture asymmetric Laplace distribution. This paper discusses Bayesian inference for nonparametric quantile regression. This general approach fits quantile regression curves using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through reversible jump Markov chain Monte Carlo (RJMCMC) of Green (Biometrika 82:711-732, 1995). Instead of drawing samples from the posterior, we use regression quantiles to create Markov chains for the estimation of the quantile curves. We also use approximate Bayesian factor in the inference. This method extends the work in automatic Bayesian mean curve fitting to quantile regression. Numerical results show that this Bayesian quantile smoothing technique is competitive with quantile regression/smoothing splines of He and Ng (Comput. Stat. 14:315-337, 1999) and P-splines (penalized splines) of Eilers and de Menezes (Bioinformatics 21(7):1146-1153, 2005).
机译:分位数回归(包括中位数回归)作为一种比均值回归更完整的统计模型,现已广为应用。关于分位数回归或贝叶斯分位数回归的贝叶斯推断最近引起了很多兴趣。贝叶斯分位数回归中的大多数现有研究都集中在参数分位数回归上,尽管讨论了通过称为非对称拉普拉斯分布的参数分布或通过称为比例混合非对称拉普拉斯分布的非参数替代模型误差建模的不同方法。本文讨论了非参数分位数回归的贝叶斯推断。该通用方法使用分段多项式函数拟合分位数回归曲线,该分段多项式函数在未知位置具有未知的节数,所有这些均视为通过格林的可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)推断的参数(Biometrika 82:711-732,1995) 。代替从后验中提取样本,我们使用回归分位数创建马尔可夫链来估计分位数曲线。我们在推断中也使用了近似贝叶斯因子。此方法将自动贝叶斯均值曲线拟合的工作扩展到分位数回归。数值结果表明,这种贝叶斯分位数平滑技术可与He和Ng的分位数回归/平滑样条曲线(Comput。Stat。14:315-337,1999)以及Eilers和de Menezes的P样条曲线(惩罚样条曲线)(生物信息学21)竞争。 (7):1146-1153,2005)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号