首页> 外文期刊>Statistics and computing >Robust estimation of the correlation matrix of longitudinal data
【24h】

Robust estimation of the correlation matrix of longitudinal data

机译:纵向数据相关矩阵的鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form ∑ = DLL~T D where D is a diagonal matrix proportional to the square roots of the diagonal entries of ∑ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate r-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L, D) are modeled parsimoniously using covari-ates. We compare our results with those based on the modified Cholesky decomposition of the form LD~2L~T using simulations and a real dataset.
机译:我们提出了一种用于对纵向数据集的相关矩阵进行建模的双重鲁棒程序。它基于形式为∑ = DLL〜TD的另一种Cholesky分解,其中D是与∑对角项的平方根成比例的对角矩阵,L是仅确定相关矩阵的单位下三角矩阵。第一个稳健性是针对D中创新差异的模型错误指定,第二个稳健性是针对数据中异常值的稳健性。后者使用自由度未知的重尾多元r分布处理。当使用协变量对(L,D)的非冗余条目和非约束条目进行简化建模时,我们开发了Fisher评分算法来计算参数的最大似然估计值。我们使用模拟和真实数据集,将结果与基于LD〜2L〜T形式的改进的Cholesky分解的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号