首页> 外文期刊>Journal of statistical computation and simulation >Robust estimation for the correlation matrix of multivariate longitudinal data
【24h】

Robust estimation for the correlation matrix of multivariate longitudinal data

机译:多变量纵向数据相关矩阵的鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

Modelling the covariance structure of multivariate longitudinal data is more challenging than its univariate counterpart, owing to the complex correlated structure among multiple responses. Furthermore, there are little methods focusing on the robustness of estimating the corresponding correlation matrix. In this paper, we propose an alternative Cholesky block decomposition (ACBD) for the covariance matrix of multivariate longitudinal data. The new unconstrained parameterization is capable to automatically eliminate the positive definiteness constraint of the covariance matrix and robustly estimate the correlation matrix with respect to the model misspecifications of the nested prediction error covariance matrices. The entries of the new decomposition are modelled by regression models, and the maximum likelihood estimators of the regression parameters in joint mean-covariance models are computed by a quasi-Fisher iterative algorithm. The resulting estimators are shown to be consistent and asymptotically normal. Simulations and real data analysis illustrate that the new method performs well.
机译:模拟多变量纵向数据的协方差结构比单变量对应更具挑战性,由于多重反应之间的复杂结构。此外,几乎没有关于估计相应相关矩阵的稳健性的方法。在本文中,我们为多变量纵向数据的协方差矩阵提出了一种替代的弦块块分解(ACBD)。新的无约束参数化能够自动消除协方差矩阵的正绝常约束,并对嵌套预测误差协方差矩阵的模型误操作,鲁棒地估计相关矩阵。新分解的条目由回归模型建模,并通过准fisher迭代算法计算联合均协方差模型中的回归参数的最大似然估计。结果估计器被证明是一致的和渐近正常的。仿真和实际数据分析说明新方法表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号