首页> 外文期刊>Statistics and computing >Bayesian longitudinal item response modeling with restricted covariance pattern structures
【24h】

Bayesian longitudinal item response modeling with restricted covariance pattern structures

机译:具有受限协方差模式结构的贝叶斯纵向项目响应建模

获取原文
获取原文并翻译 | 示例

摘要

Educational studies are often focused on growth in student performance and background variables that can explain developmental differences across examinees. To study educational progress, a flexible latent variable model is required to model individual differences in growth given longitudinal item response data, while accounting for time-heterogenous dependencies between measurements of student performance. Therefore, an item response theory model, to measure time-specific latent traits, is extended to model growth using the latent variable technology. Following Muthen (Learn Individ Differ 10: 73-101, 1998) and Azevedo et al. (Comput Stat Data Anal 56: 4399-4412, 2012b), among others, the mean structure of the model represents developmental change in student achievement. Restricted covariance pattern models are proposed to model the variance-covariance structure of the student achievements. The main advantage of the extension is its ability to describe and explain the type of time-heterogenous dependency between student achievements. An efficient MCMC algorithm is given that can handle identification rules and restricted parametric covariance structures. A reparameterization technique is used, where unrestricted model parameters are sampled and transformed to obtain MCMC samples under the implied restrictions. The study is motivated by a large-scale longitudinal research program of the Brazilian Federal government to improve the teaching quality and general structure of schools for primary education. It is shown that the growth in math achievement can be accurately measured when accounting for complex dependencies over grades using time-heterogenous covariances structures.
机译:教育研究通常侧重于学生表现和背景变量的增长,这可以解释考生之间的发展差异。为了研究教育进步,需要一个灵活的潜在变量模型来模拟给定纵向项目响应数据的个体增长差异,同时考虑学生成绩测量之间时间异质性的依赖性。因此,用于测量特定时间潜在性状的项目响应理论模型被扩展为使用潜在变量技术对增长进行建模。遵循Muthen(Learn Individ Differ 10:73-101,1998)和Azevedo等。 (Comput Stat Data Anal 56:4399-4412,2012b),其中,模型的平均结构代表了学生成绩的发展变化。提出了受限协方差模式模型来模拟学生成绩的方差-协方差结构。扩展的主要优点是它能够描述和解释学生成绩之间时间异质性依赖的类型。给出了一种有效的MCMC算法,该算法可以处理识别规则和受限的参数协方差结构。使用了重新参数化技术,其中对不受限制的模型参数进行采样和转换,以在隐含的约束下获得MCMC样本。这项研究是受巴西联邦政府的一项大规模纵向研究计划的推动,目的是提高初等教育学校的教学质量和总体结构。结果表明,当使用时间异质协方差结构考虑年级的复杂依赖性时,可以准确地测量数学成绩的增长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号